Reference card - DART

From IAMC-Documentation
Jump to navigation Jump to search

The reference card is a clearly defined description of model features. The numerous options have been organized into a limited amount of default and model specific (non default) options. In addition some features are described by a short clarifying text.

Legend:

  • not implemented
  • implemented
  • implemented (not default option)

About

Name and version

DART -clim GTAP9

Institution

Kiel Institute for the World Economy (IfW), Germany, https://www.ifw-kiel.de/.

Documentation

DART documentation is limited and consists of a reference card

Process state

published

Model scope and methods

Model type

  • Integrated assessment model
  • Energy system model
  • CGE
  • CBA-integrated assessment model

Geographical scope

  • Global
  • Regional

Objective

DART is a global multi-sectoral, multi-regional recursive-dynamic CGE model. First developed in the 1990s, it has been widely applied to analyze environmental policies, energy policies, biofuel policies, and international climate policies. The version used here is designed to analyze climate and energy policies.

Solution concept

  • Partial equilibrium (price elastic demand)
  • Partial equilibrium (fixed demand)
  • General equilibrium (closed economy)

Solution horizon

  • Recursive dynamic (myopic)
  • Intertemporal optimization (foresight)

Solution method

  • Simulation
  • Optimization


Temporal dimension

Base year:2011, time steps:1, horizon: 2030

Spatial dimension

Number of regions:21

  1. USA
  2. CAN - Canada
  3. KOR- South Korea
  4. RUS - Russian Federation
  5. CHN - China
  6. IND - India
  7. OAS - Other Asia
  8. BRA - Brazil
  9. OAM - Rest of Latin America
  10. FRA - France
  11. GER - Germany
  12. GBR - Great Britain
  13. BLX - Benelux
  14. SCA - Scandinavia
  15. SEU - Southern Europa
  16. REU - Rest of Europe
  17. EEU - Eastern Europe
  18. MEA - Middle East / North Africa
  19. AFR - Subsaharan Africa
  20. ANZ - Australia / New Zealand
  21. JPN - Japan

Note: For reported EMF36 (https://emf.stanford.edu/projects/emf-36-carbon-pricing-after-paris-carpri) results, the 8 EU regions have been aggregared to EUR

Time discounting type

  • Discount rate exogenous
  • Discount rate endogenous

Policies

  • Emission tax
  • Emission pricing
  • Cap and trade
  • Fuel taxes
  • Fuel subsidies
  • Feed-in-tariff
  • Portfolio standard
  • Capacity targets
  • Emission standards
  • Energy efficiency standards
  • Agricultural producer subsidies
  • Agricultural consumer subsidies
  • Land protection
  • Pricing carbon stocks

Socio-economic drivers

Population

  • Yes (exogenous)
  • Yes (endogenous)

Population age structure

  • Yes (exogenous)
  • Yes (endogenous)

Education level

  • Yes (exogenous)
  • Yes (endogenous)

Urbanization rate

  • Yes (exogenous)
  • Yes (endogenous)

GDP

  • Yes (exogenous)
  • Yes (endogenous)

Income distribution

  • Yes (exogenous)
  • Yes (endogenous)

Employment rate

  • Yes (exogenous)
  • Yes (endogenous)

Labor productivity

  • Yes (exogenous)
  • Yes (endogenous)

Total factor productivity

  • Yes (exogenous)
  • Yes (endogenous)

Autonomous energy efficiency improvements

  • Yes (exogenous)
  • Yes (endogenous)


Macro-economy

Economic sector

Industry

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Energy

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Transportation

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Residential and commercial

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Agriculture

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Forestry

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)


Macro-economy

Trade

  • Coal
  • Oil
  • Gas
  • Uranium
  • Electricity
  • Bioenergy crops
  • Food crops
  • Capital
  • Emissions permits
  • Non-energy goods

Cost measures

  • GDP loss
  • Welfare loss
  • Consumption loss
  • Area under MAC
  • Energy system cost mark-up

Categorization by group

  • Income
  • Urban - rural
  • Technology adoption
  • Age
  • Gender
  • Education level
  • Household size

Institutional and political factors

  • Early retirement of capital allowed
  • Interest rates differentiated by country/region
  • Regional risk factors included
  • Technology costs differentiated by country/region
  • Technological change differentiated by country/region
  • Behavioural change differentiated by country/region
  • Constraints on cross country financial transfers
  • Savings rate

Note: Exogenous

Resource use

Coal

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Conventional Oil

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Unconventional Oil

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Conventional Gas

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Unconventional Gas

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Uranium

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Bioenergy

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Water

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Raw Materials

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Land

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)


Technological change

Energy conversion technologies

  • No technological change
  • Exogenous technological change
  • Endogenous technological change

Energy End-use

  • No technological change
  • Exogenous technological change
  • Endogenous technological change

Material Use

  • No technological change
  • Exogenous technological change
  • Endogenous technological change

Agriculture (tc)

  • No technological change
  • Exogenous technological change
  • Endogenous technological change

Other technological change

  • Electricity (Learning Curve)

Energy


Energy technology substitution

Energy technology choice

  • No discrete technology choices
  • Logit choice model
  • Production function
  • Linear choice (lowest cost)
  • Lowest cost with adjustment penalties

Energy technology substitutability

  • Mostly high substitutability
  • Mostly low substitutability
  • Mixed high and low substitutability

Energy technology deployment

  • Expansion and decline constraints
  • System integration constraints

Energy

Electricity technologies

  • Coal w/o CCS
  • Coal w/ CCS
  • Gas w/o CCS
  • Gas w/ CCS
  • Oil w/o CCS
  • Oil w/ CCS
  • Bioenergy w/o CCS
  • Bioenergy w/ CCS
  • Geothermal power
  • Nuclear power
  • Solar power
  • Solar power-central PV
  • Solar power-distributed PV
  • Solar power-CSP
  • Wind power
  • Wind power-onshore
  • Wind power-offshore
  • Hydroelectric power
  • Ocean power

Hydrogen production

  • Coal to hydrogen w/o CCS
  • Coal to hydrogen w/ CCS
  • Natural gas to hydrogen w/o CCS
  • Natural gas to hydrogen w/ CCS
  • Oil to hydrogen w/o CCS
  • Oil to hydrogen w/ CCS
  • Biomass to hydrogen w/o CCS
  • Biomass to hydrogen w/ CCS
  • Nuclear thermochemical hydrogen
  • Solar thermochemical hydrogen
  • Electrolysis

Refined liquids

  • Coal to liquids w/o CCS
  • Coal to liquids w/ CCS
  • Gas to liquids w/o CCS
  • Gas to liquids w/ CCS
  • Bioliquids w/o CCS
  • Bioliquids w/ CCS
  • Oil refining

Refined gases

  • Coal to gas w/o CCS
  • Coal to gas w/ CCS
  • Oil to gas w/o CCS
  • Oil to gas w/ CCS
  • Biomass to gas w/o CCS
  • Biomass to gas w/ CCS

Heat generation

  • Coal heat
  • Natural gas heat
  • Oil heat
  • Biomass heat
  • Geothermal heat
  • Solarthermal heat
  • CHP (coupled heat and power)

Grid Infra Structure

Electricity

  • Yes (aggregate)
  • Yes (spatially explicit)

Gas

  • Yes (aggregate)
  • Yes (spatially explicit)

Heat

  • Yes (aggregate)
  • Yes (spatially explicit)

CO2

  • Yes (aggregate)
  • Yes (spatially explicit)

Hydrogen

  • Yes (aggregate)
  • Yes (spatially explicit)


Energy end-use technologies

Passenger transportation

  • Passenger trains
  • Buses
  • Light Duty Vehicles (LDVs)
  • Electric LDVs
  • Hydrogen LDVs
  • Hybrid LDVs
  • Gasoline LDVs
  • Diesel LDVs
  • Passenger aircrafts

Freight transportation

  • Freight trains
  • Heavy duty vehicles
  • Freight aircrafts
  • Freight ships

Industry

  • Steel production
  • Aluminium production
  • Cement production
  • Petrochemical production
  • Paper production
  • Plastics production
  • Pulp production

Note: indicated uses are modelled in aggregated sectors, but not disaggregated

Residential and commercial

  • Space heating
  • Space cooling
  • Cooking
  • Refrigeration
  • Washing
  • Lighting

Land-use

Land cover

  • Cropland
  • Cropland irrigated
  • Cropland food crops
  • Cropland feed crops
  • Cropland energy crops
  • Forest
  • Managed forest
  • Natural forest
  • Pasture
  • Shrubland
  • Built-up area

Agriculture and forestry demands

  • Agriculture food
  • Agriculture food crops
  • Agriculture food livestock
  • Agriculture feed
  • Agriculture feed crops
  • Agriculture feed livestock
  • Agriculture non-food
  • Agriculture non-food crops
  • Agriculture non-food livestock
  • Agriculture bioenergy
  • Agriculture residues
  • Forest industrial roundwood
  • Forest fuelwood
  • Forest residues

Agricultural commodities

  • Wheat
  • Rice
  • Other coarse grains
  • Oilseeds
  • Sugar crops
  • Ruminant meat
  • Non-ruminant meat and eggs
  • Dairy products

Emission, climate and impacts

Greenhouse gases

  • CO2 fossil fuels
  • CO2 cement
  • CO2 land use
  • CH4 energy
  • CH4 land use
  • CH4 other
  • N2O energy
  • N2O land use
  • N2O other
  • CFCs
  • HFCs
  • SF6
  • PFCs

Pollutants

  • CO energy
  • CO land use
  • CO other
  • NOx energy
  • NOx land use
  • NOx other
  • VOC energy
  • VOC land use
  • VOC other
  • SO2 energy
  • SO2 land use
  • SO2 other
  • BC energy
  • BC land use
  • BC other
  • OC energy
  • OC land use
  • OC other
  • NH3 energy
  • NH3 land use
  • NH3 other

Climate indicators

  • Concentration: CO2
  • Concentration: CH4
  • Concentration: N2O
  • Concentration: Kyoto gases
  • Radiative forcing: CO2
  • Radiative forcing: CH4
  • Radiative forcing: N2O
  • Radiative forcing: F-gases
  • Radiative forcing: Kyoto gases
  • Radiative forcing: aerosols
  • Radiative forcing: land albedo
  • Radiative forcing: AN3A
  • Radiative forcing: total
  • Temperature change
  • Sea level rise
  • Ocean acidification

Carbon dioxide removal

  • Bioenergy with CCS
  • Reforestation
  • Afforestation
  • Soil carbon enhancement
  • Direct air capture
  • Enhanced weathering

Climate change impacts

  • Agriculture
  • Energy supply
  • Energy demand
  • Economic output
  • Built capital
  • Inequality

Co-Linkages

  • Energy security: Fossil fuel imports & exports (region)
  • Energy access: Household energy consumption
  • Air pollution & health: Source-based aerosol emissions
  • Air pollution & health: Health impacts of air Pollution
  • Food access
  • Water availability
  • Biodiversity