EPPA: Difference between revisions

From IAMC-Documentation
Jump to navigation Jump to search
No edit summary
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 2: Line 2:
{{ModelInfoTemplate
{{ModelInfoTemplate
|Name=EPPA
|Name=EPPA
|Version=6
|ModelLink=https://globalchange.mit.edu/research/research-tools/eppa
|participation=full
|participation=full
|processState=in preparation
|processState=in preparation
}}
{{InstitutionTemplate
|abbr=MIT
|institution=Massachusetts Institute of Technology
|link=https://globalchange.mit.edu/
|country=USA
}}
}}
{{ScopeMethodTemplate
{{ScopeMethodTemplate
Line 17: Line 25:
|Nr=18
|Nr=18
|Region=USA; EU; China; India; Japan; Brazil; Canada; Mexico; Russia; South Korea; Indonesia; Africa; Middle East; Australia and New Zealand; Dynamic Asia; Rest of East Asia; Rest of Eurasia; Rest of Latin America
|Region=USA; EU; China; India; Japan; Brazil; Canada; Mexico; Russia; South Korea; Indonesia; Africa; Middle East; Australia and New Zealand; Dynamic Asia; Rest of East Asia; Rest of Eurasia; Rest of Latin America
|TimeDiscountingTypeOption=Discount rate exogenous
|PoliciesOption=Emission tax; Emission pricing; Cap and trade; Fuel taxes; Fuel subsidies; Feed-in-tariff; Portfolio standard; Capacity targets; Emission standards; Energy efficiency standards; Agricultural producer subsidies; Agricultural consumer subsidies; Land protection; Pricing carbon stocks
|PoliciesOption=Emission tax; Emission pricing; Cap and trade; Fuel taxes; Fuel subsidies; Feed-in-tariff; Portfolio standard; Capacity targets; Emission standards; Energy efficiency standards; Agricultural producer subsidies; Agricultural consumer subsidies; Land protection; Pricing carbon stocks
}}
}}
Line 33: Line 42:
|UnconventionalOilRUOption=Yes (supply curve)
|UnconventionalOilRUOption=Yes (supply curve)
|ConventionalGasRUOption=Yes (supply curve)
|ConventionalGasRUOption=Yes (supply curve)
|Unconventional GasRUOption=Yes (supply curve)
|UnconventionalGasRUOption=Yes (supply curve)
|BioenergyRUOption=Yes (supply curve)
|BioenergyRUOption=Yes (supply curve)
|LandRUOption=Yes (process model)
|LandRUOption=Yes (process model)
Line 46: Line 55:
|AgricultureTCOption=Exogenous technological change
|AgricultureTCOption=Exogenous technological change
}}
}}
{{EnergyTemplate}}
{{EnergyTemplate
{{Land-useTemplate}}
|EnergyTechnologyChoiceOption=Production function
{{EmissionClimateTemplate}}
|EnergyTechnologySubstitutabilityOption=Mixed high and low substitutability
{{InstitutionTemplate
|EnergyTechnologyDeploymentOption=Expansion and decline constraints; System integration constraints
|abbr=MIT
|ElectricityTechnologyOption=Coal w/o CCS; Coal w/ CCS; Gas w/o CCS; Gas w/ CCS; Oil w/o CCS; Oil w/ CCS; Bioenergy w/o CCS; Bioenergy w/ CCS; Nuclear power; Solar power; Wind power; Hydroelectric power
|institution=Massachusetts Institute of Technology
|RefinedLiquidsOption=Coal to liquids w/o CCS; Gas to liquids w/o CCS; Bioliquids w/o CCS; Bioliquids w/ CCS; Oil refining
|link=https://globalchange.mit.edu/research/research-tools/eppa
|RefinedGasesOption=Coal to gas w/o CCS
|country=USA
|PassengerTransportationOption=Light Duty Vehicles (LDVs); Electric LDVs; Hydrogen LDVs; Hybrid LDVs; Gasoline LDVs
}}
{{Land-useTemplate
|LandCoverOption=Cropland; Cropland energy crops; Forest; Managed forest; Natural forest; Pasture
|AgricultureAndForestryDemandsOption=Agriculture food; Agriculture feed livestock; Agriculture bioenergy; Agriculture residues
}}
{{EmissionClimateTemplate
|GHGOption=CO2 fossil fuels; CO2 cement; CO2 land use; CH4 energy; CH4 land use; CH4 other; N2O energy; N2O land use; N2O other; CFCs; HFCs; SF6; PFCs
|PollutantOption=CO energy; CO land use; CO other; NOx energy; NOx land use; NOx other; VOC energy; VOC land use; VOC other; SO2 land use; SO2 other; BC energy; BC land use; BC other; OC energy; OC land use; OC other; NH3 energy; NH3 land use; NH3 other
|ClimateIndicatorOption=Concentration: CO2; Concentration: CH4; Concentration: N2O; Concentration: Kyoto gases; Radiative forcing: CO2; Radiative forcing: CH4; Radiative forcing: N2O; Radiative forcing: F-gases; Radiative forcing: Kyoto gases; Radiative forcing: aerosols; Radiative forcing: total; Temperature change; Sea level rise; Ocean acidification
|CarbonDioxideRemovalOption=Bioenergy with CCS; Reforestation; Afforestation
|ClimateChangeImpactsOption=Agriculture; Economic output
|Co-LinkagesOption=Energy security: Fossil fuel imports & exports (region); Air pollution & health: Health impacts of air Pollution; Water availability
}}
}}

Latest revision as of 17:46, 26 August 2020

The reference card is a clearly defined description of model features. The numerous options have been organized into a limited amount of default and model specific (non default) options. In addition some features are described by a short clarifying text.

Legend:

  • not implemented
  • implemented
  • implemented (not default option)

A page refresh may be needed after modifying data.


About

Name and version

EPPA 6

Institution

Massachusetts Institute of Technology (MIT), USA, https://globalchange.mit.edu/.

Documentation

EPPA documentation consists of a referencecard and detailed model documentation

Process state

in preparation



Model scope and methods

Model documentation: Model_scope_and_methods - EPPA

Model type

  • Integrated assessment model
  • Energy system model
  • CGE
  • CBA-integrated assessment model

Geographical scope

  • Global
  • Regional

Objective

Projecting Economy, Energy, and Climate Impacts

Solution concept

  • Partial equilibrium (price elastic demand)
  • Partial equilibrium (fixed demand)
  • General equilibrium (closed economy)

Solution horizon

  • Recursive dynamic (myopic)
  • Intertemporal optimization (foresight)

Solution method

  • Simulation
  • Optimization


Temporal dimension

Base year:2007, time steps:5 years from 2015, horizon: 2100

Spatial dimension

Number of regions:18

  1. USA
  2. EU
  3. China
  4. India
  5. Japan
  6. Brazil
  7. Canada
  8. Mexico
  9. Russia
  10. South Korea
  11. Indonesia
  12. Africa
  13. Middle East
  14. Australia and New Zealand
  15. Dynamic Asia
  16. Rest of East Asia
  17. Rest of Eurasia
  18. Rest of Latin America

Time discounting type

  • Discount rate exogenous
  • Discount rate endogenous

Policies

  • Emission tax
  • Emission pricing
  • Cap and trade
  • Fuel taxes
  • Fuel subsidies
  • Feed-in-tariff
  • Portfolio standard
  • Capacity targets
  • Emission standards
  • Energy efficiency standards
  • Agricultural producer subsidies
  • Agricultural consumer subsidies
  • Land protection
  • Pricing carbon stocks


Socio-economic drivers

Model documentation: Socio-economic drivers - EPPA

Population

  • Yes (exogenous)
  • Yes (endogenous)

Population age structure

  • Yes (exogenous)
  • Yes (endogenous)

Education level

  • Yes (exogenous)
  • Yes (endogenous)

Urbanization rate

  • Yes (exogenous)
  • Yes (endogenous)

GDP

  • Yes (exogenous)
  • Yes (endogenous)

Income distribution

  • Yes (exogenous)
  • Yes (endogenous)

Employment rate

  • Yes (exogenous)
  • Yes (endogenous)

Labor productivity

  • Yes (exogenous)
  • Yes (endogenous)

Total factor productivity

  • Yes (exogenous)
  • Yes (endogenous)

Autonomous energy efficiency improvements

  • Yes (exogenous)
  • Yes (endogenous)



Macro-economy

Model documentation: Macro-economy - EPPA

Economic sector

Industry

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Energy

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Transportation

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Residential and commercial

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Agriculture

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Forestry

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)


Macro-economy

Trade

  • Coal
  • Oil
  • Gas
  • Uranium
  • Electricity
  • Bioenergy crops
  • Food crops
  • Capital
  • Emissions permits
  • Non-energy goods

Cost measures

  • GDP loss
  • Welfare loss
  • Consumption loss
  • Area under MAC
  • Energy system cost mark-up

Categorization by group

  • Income
  • Urban - rural
  • Technology adoption
  • Age
  • Gender
  • Education level
  • Household size

Institutional and political factors

  • Early retirement of capital allowed
  • Interest rates differentiated by country/region
  • Regional risk factors included
  • Technology costs differentiated by country/region
  • Technological change differentiated by country/region
  • Behavioural change differentiated by country/region
  • Constraints on cross country financial transfers

Resource use

Coal

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Conventional Oil

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Unconventional Oil

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Conventional Gas

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Unconventional Gas

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Uranium

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Bioenergy

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Water

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Raw Materials

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Land

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)


Technological change

Energy conversion technologies

  • No technological change
  • Exogenous technological change
  • Endogenous technological change

Energy End-use

  • No technological change
  • Exogenous technological change
  • Endogenous technological change

Material Use

  • No technological change
  • Exogenous technological change
  • Endogenous technological change

Agriculture (tc)

  • No technological change
  • Exogenous technological change
  • Endogenous technological change



Energy

Model documentation: Energy - EPPA


Energy technology substitution

Energy technology choice

  • No discrete technology choices
  • Logit choice model
  • Production function
  • Linear choice (lowest cost)
  • Lowest cost with adjustment penalties

Energy technology substitutability

  • Mostly high substitutability
  • Mostly low substitutability
  • Mixed high and low substitutability

Energy technology deployment

  • Expansion and decline constraints
  • System integration constraints

Energy

Electricity technologies

  • Coal w/o CCS
  • Coal w/ CCS
  • Gas w/o CCS
  • Gas w/ CCS
  • Oil w/o CCS
  • Oil w/ CCS
  • Bioenergy w/o CCS
  • Bioenergy w/ CCS
  • Geothermal power
  • Nuclear power
  • Solar power
  • Solar power-central PV
  • Solar power-distributed PV
  • Solar power-CSP
  • Wind power
  • Wind power-onshore
  • Wind power-offshore
  • Hydroelectric power
  • Ocean power

Hydrogen production

  • Coal to hydrogen w/o CCS
  • Coal to hydrogen w/ CCS
  • Natural gas to hydrogen w/o CCS
  • Natural gas to hydrogen w/ CCS
  • Oil to hydrogen w/o CCS
  • Oil to hydrogen w/ CCS
  • Biomass to hydrogen w/o CCS
  • Biomass to hydrogen w/ CCS
  • Nuclear thermochemical hydrogen
  • Solar thermochemical hydrogen
  • Electrolysis

Refined liquids

  • Coal to liquids w/o CCS
  • Coal to liquids w/ CCS
  • Gas to liquids w/o CCS
  • Gas to liquids w/ CCS
  • Bioliquids w/o CCS
  • Bioliquids w/ CCS
  • Oil refining

Refined gases

  • Coal to gas w/o CCS
  • Coal to gas w/ CCS
  • Oil to gas w/o CCS
  • Oil to gas w/ CCS
  • Biomass to gas w/o CCS
  • Biomass to gas w/ CCS

Heat generation

  • Coal heat
  • Natural gas heat
  • Oil heat
  • Biomass heat
  • Geothermal heat
  • Solarthermal heat
  • CHP (coupled heat and power)

Grid Infra Structure

Electricity

  • Yes (aggregate)
  • Yes (spatially explicit)

Gas

  • Yes (aggregate)
  • Yes (spatially explicit)

Heat

  • Yes (aggregate)
  • Yes (spatially explicit)

CO2

  • Yes (aggregate)
  • Yes (spatially explicit)

Hydrogen

  • Yes (aggregate)
  • Yes (spatially explicit)


Energy end-use technologies

Passenger transportation

  • Passenger trains
  • Buses
  • Light Duty Vehicles (LDVs)
  • Electric LDVs
  • Hydrogen LDVs
  • Hybrid LDVs
  • Gasoline LDVs
  • Diesel LDVs
  • Passenger aircrafts

Freight transportation

  • Freight trains
  • Heavy duty vehicles
  • Freight aircrafts
  • Freight ships

Industry

  • Steel production
  • Aluminium production
  • Cement production
  • Petrochemical production
  • Paper production
  • Plastics production
  • Pulp production

Residential and commercial

  • Space heating
  • Space cooling
  • Cooking
  • Refrigeration
  • Washing
  • Lighting


Land-use

Model documentation: Land-use - EPPA

Land cover

  • Cropland
  • Cropland irrigated
  • Cropland food crops
  • Cropland feed crops
  • Cropland energy crops
  • Forest
  • Managed forest
  • Natural forest
  • Pasture
  • Shrubland
  • Built-up area

Agriculture and forestry demands

  • Agriculture food
  • Agriculture food crops
  • Agriculture food livestock
  • Agriculture feed
  • Agriculture feed crops
  • Agriculture feed livestock
  • Agriculture non-food
  • Agriculture non-food crops
  • Agriculture non-food livestock
  • Agriculture bioenergy
  • Agriculture residues
  • Forest industrial roundwood
  • Forest fuelwood
  • Forest residues

Agricultural commodities

  • Wheat
  • Rice
  • Other coarse grains
  • Oilseeds
  • Sugar crops
  • Ruminant meat
  • Non-ruminant meat and eggs
  • Dairy products



Emission, climate and impacts

Model documentation: Emissions - EPPAClimate - EPPANon-climate sustainability dimension - EPPA

Greenhouse gases

  • CO2 fossil fuels
  • CO2 cement
  • CO2 land use
  • CH4 energy
  • CH4 land use
  • CH4 other
  • N2O energy
  • N2O land use
  • N2O other
  • CFCs
  • HFCs
  • SF6
  • PFCs

Pollutants

  • CO energy
  • CO land use
  • CO other
  • NOx energy
  • NOx land use
  • NOx other
  • VOC energy
  • VOC land use
  • VOC other
  • SO2 energy
  • SO2 land use
  • SO2 other
  • BC energy
  • BC land use
  • BC other
  • OC energy
  • OC land use
  • OC other
  • NH3 energy
  • NH3 land use
  • NH3 other

Climate indicators

  • Concentration: CO2
  • Concentration: CH4
  • Concentration: N2O
  • Concentration: Kyoto gases
  • Radiative forcing: CO2
  • Radiative forcing: CH4
  • Radiative forcing: N2O
  • Radiative forcing: F-gases
  • Radiative forcing: Kyoto gases
  • Radiative forcing: aerosols
  • Radiative forcing: land albedo
  • Radiative forcing: AN3A
  • Radiative forcing: total
  • Temperature change
  • Sea level rise
  • Ocean acidification

Carbon dioxide removal

  • Bioenergy with CCS
  • Reforestation
  • Afforestation
  • Soil carbon enhancement
  • Direct air capture
  • Enhanced weathering

Climate change impacts

  • Agriculture
  • Energy supply
  • Energy demand
  • Economic output
  • Built capital
  • Inequality

Co-Linkages

  • Energy security: Fossil fuel imports & exports (region)
  • Energy access: Household energy consumption
  • Air pollution & health: Source-based aerosol emissions
  • Air pollution & health: Health impacts of air Pollution
  • Food access
  • Water availability
  • Biodiversity