Heat - GCAM: Difference between revisions
(Edited automatically from page GAMS setup.) |
mNo edit summary |
||
(5 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{ModelDocumentationTemplate | {{ModelDocumentationTemplate | ||
|IsDocumentationOf= | |IsDocumentationOf=GCAM | ||
|DocumentationCategory=Heat | |DocumentationCategory=Heat | ||
}} | }} | ||
Heat is included as a final energy carrier in the IEA Energy Balances, and is intended to represent heat sold to third parties. That is, the use of heat and/or steam produced on-site at buildings and factories is simply reported as the energy consumption used to produce the heat and/or steam. | |||
In most regions in GCAM, heat is not explicitly represented as an energy commodity; instead, the reported fuel inputs to heat plants are assigned directly to the end-use sectors that consume the heat (buildings and industry). Combined heat and power (CHP) is included as a technology option, but is located within the industrial energy use sector, and no inter-sectoral flow of heat is represented. However, in several regions where purchased heat accounts for a large share of the final energy use, GCAM does include a representation of district heat production, with four competing technology options: liquid fuels, natural gas, biomass, and coal. See sections on [https://jgcri.github.io/gcam-doc/supply_energy.html#district-services district services] and [https://jgcri.github.io/gcam-doc/details_energy.html#district-services district services details] for more information. |
Latest revision as of 18:46, 16 June 2022
Corresponding documentation | |
---|---|
Previous versions | |
No previous version available | |
Model information | |
Model link | |
Institution | Pacific Northwest National Laboratory, Joint Global Change Research Institute (PNNL, JGCRI), USA, https://www.pnnl.gov/projects/jgcri. |
Solution concept | General equilibrium (closed economy)GCAM solves all energy, water, and land markets simultaneously |
Solution method | Recursive dynamic solution method |
Anticipation | GCAM is a dynamic recursive model, meaning that decision-makers do not know the future when making a decision today. After it solves each period, the model then uses the resulting state of the world, including the consequences of decisions made in that period - such as resource depletion, capital stock retirements and installations, and changes to the landscape - and then moves to the next time step and performs the same exercise. For long-lived investments, decision-makers may account for future profit streams, but those estimates would be based on current prices. For some parts of the model, economic agents use prior experience to form expectations based on multi-period experiences. |
Heat is included as a final energy carrier in the IEA Energy Balances, and is intended to represent heat sold to third parties. That is, the use of heat and/or steam produced on-site at buildings and factories is simply reported as the energy consumption used to produce the heat and/or steam.
In most regions in GCAM, heat is not explicitly represented as an energy commodity; instead, the reported fuel inputs to heat plants are assigned directly to the end-use sectors that consume the heat (buildings and industry). Combined heat and power (CHP) is included as a technology option, but is located within the industrial energy use sector, and no inter-sectoral flow of heat is represented. However, in several regions where purchased heat accounts for a large share of the final energy use, GCAM does include a representation of district heat production, with four competing technology options: liquid fuels, natural gas, biomass, and coal. See sections on district services and district services details for more information.