Other end-use - IMAGE: Difference between revisions

From IAMC-Documentation
Jump to navigation Jump to search
(Edited automatically from page IMAGE setup.)
 
No edit summary
 
(One intermediate revision by one other user not shown)
Line 3: Line 3:
|DocumentationCategory=Other end-use
|DocumentationCategory=Other end-use
}}
}}
== CCS ==
For carbon capture and storage, three different steps are identified in the TIMER model: CO<sub>2</sub> capture and compression, CO<sub>2</sub> transport and CO<sub>2</sub> storage. Capture is assumed to be possible in electric power production, half of the industry sector and hydrogen production. Here, alternative technologies are defined that compete for market share with conventional technologies (without CCS). The former have higher costs and slightly lower conversion efficiencies and are therefore not chosen under default conditions; however, these technologies increase much less in price if a carbon price is introduced in the model. Capture is assumed to be at a maximum 95%; the remaining 5% is still influenced by the carbon price. The actual market shares of the conventional and CCS based technologies are determined in each market using multinomial logit equations. The capture costs are based on Hendriks et al. [[CiteRef::IMG_Hendriks_2002]][[CiteRef::IMG_Hendriks_2004a]][[CiteRef::IMG_Hendriks_2004b]]. In the electric power sector, they increase generation costs by about 40-50% for natural gas and coal-based power plants. Expressed in terms of costs per unit of CO<sub>2</sub>, this is equivalent to about 35-45$/tCO<sub>2</sub>. Similar cost levels are assumed for industrial sources. CO<sub>2</sub> transport costs were estimated for each region and storage category on the basis of the distance between the main CO2 sources (industrial centres) and storage sites [[CiteRef::IMG_Hendriks_2004b]]. The estimated transport costs vary from 1-30 $/tCO<sub>2</sub> the majority being below 10$/tCO<sub>2</sub>. Finally, for each region the potential for 11 storage categories has been estimated (in empty and still existing oil and gas fields, and on- and offshore thus a total of 8 combinations); enhanced coal-based methane recovery and aquifers (the original aquifer category was divided into two halves to allow more differentiation in costs). For each category, storage costs have been determined with typical values around 5-10$/tCO<sub>2</sub> [[CiteRef::IMG_Hendriks_2004b]]. The model uses these categories in the order of their transport and storage costs (the resource with lowest costs first).

Latest revision as of 11:54, 12 January 2017

Model Documentation - IMAGE

Corresponding documentation
Previous versions
Model information
Model link
Institution PBL Netherlands Environmental Assessment Agency (PBL), Netherlands, https://www.pbl.nl/en.
Solution concept Partial equilibrium (price elastic demand)
Solution method Simulation
Anticipation Simulation modelling framework, without foresight. However, a simplified version of the energy/climate part of the model (called FAIR) can be run prior to running the framework to obtain data for climate policy simulations.

CCS

For carbon capture and storage, three different steps are identified in the TIMER model: CO2 capture and compression, CO2 transport and CO2 storage. Capture is assumed to be possible in electric power production, half of the industry sector and hydrogen production. Here, alternative technologies are defined that compete for market share with conventional technologies (without CCS). The former have higher costs and slightly lower conversion efficiencies and are therefore not chosen under default conditions; however, these technologies increase much less in price if a carbon price is introduced in the model. Capture is assumed to be at a maximum 95%; the remaining 5% is still influenced by the carbon price. The actual market shares of the conventional and CCS based technologies are determined in each market using multinomial logit equations. The capture costs are based on Hendriks et al. IMG_Hendriks_2002IMG_Hendriks_2004aIMG_Hendriks_2004b. In the electric power sector, they increase generation costs by about 40-50% for natural gas and coal-based power plants. Expressed in terms of costs per unit of CO2, this is equivalent to about 35-45$/tCO2. Similar cost levels are assumed for industrial sources. CO2 transport costs were estimated for each region and storage category on the basis of the distance between the main CO2 sources (industrial centres) and storage sites IMG_Hendriks_2004b. The estimated transport costs vary from 1-30 $/tCO2 the majority being below 10$/tCO2. Finally, for each region the potential for 11 storage categories has been estimated (in empty and still existing oil and gas fields, and on- and offshore thus a total of 8 combinations); enhanced coal-based methane recovery and aquifers (the original aquifer category was divided into two halves to allow more differentiation in costs). For each category, storage costs have been determined with typical values around 5-10$/tCO2 IMG_Hendriks_2004b. The model uses these categories in the order of their transport and storage costs (the resource with lowest costs first).