Climate - GCAM: Difference between revisions
m (Rineke Oostenrijk moved page Climate - GAMS to Climate - GCAM without leaving a redirect: Text replacement - "GAMS" to "GCAM") |
(Update Hector info to 7.0) |
||
(10 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
|DocumentationCategory=Climate | |DocumentationCategory=Climate | ||
}} | }} | ||
Hector v3.1.1 is the default climate model (Hartin et al., 2015)<ref name="hartin2015">Hartin, C. A., Patel, P., Schwarber, A., Link, R. P., and Bond-Lamberty, B. P.: A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0, Geosci. Model Dev., 8, 939-955, doi:10.5194/gmd-8-939-2015, 2015.</ref> within GCAM. | |||
Hector, an open-source, object-oriented, reduced-form global climate carbon-cycle model, is written in C++. This model runs essentially instantaneously while still representing the most critical global-scale earth system processes. Hector has a three-part main carbon cycle: a one-pool atmosphere, three-pool land, and 4-pool ocean. The model’s terrestrial carbon cycle includes primary production and respiration fluxes, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector actively solves the inorganic carbon system in the surface ocean, directly calculating air– sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO<nowiki><sub>2</sub></nowiki>], radiative forcing, and surface temperatures. Hector’s flexibility, open-source nature, and modular design facilitate a broad range of research. | |||
Currently the GCAM sectors interact with Hector via emissions. At every time step, emissions from GCAM are passed to Hector. Hector converts these emissions to concentrations when necessary, and calculates the associated radiative forcing, as well as the response of the climate system and earth system (e.g., temperature, carbon-fluxes, etc.). Hector's climate information can be used as a climate constraint for in a [https://jgcri.github.io/gcam-doc/policies.html GCAM policy run]. See [http://jgcri.github.io/gcam-doc/hector.html Hector] for more details. <references /> |
Latest revision as of 18:44, 10 October 2023
Corresponding documentation | |
---|---|
Previous versions | |
No previous version available | |
Model information | |
Model link | |
Institution | Pacific Northwest National Laboratory, Joint Global Change Research Institute (PNNL, JGCRI), USA, https://www.pnnl.gov/projects/jgcri. |
Solution concept | General equilibrium (closed economy)GCAM solves all energy, water, and land markets simultaneously |
Solution method | Recursive dynamic solution method |
Anticipation | GCAM is a dynamic recursive model, meaning that decision-makers do not know the future when making a decision today. After it solves each period, the model then uses the resulting state of the world, including the consequences of decisions made in that period - such as resource depletion, capital stock retirements and installations, and changes to the landscape - and then moves to the next time step and performs the same exercise. For long-lived investments, decision-makers may account for future profit streams, but those estimates would be based on current prices. For some parts of the model, economic agents use prior experience to form expectations based on multi-period experiences. |
Hector v3.1.1 is the default climate model (Hartin et al., 2015)[1] within GCAM.
Hector, an open-source, object-oriented, reduced-form global climate carbon-cycle model, is written in C++. This model runs essentially instantaneously while still representing the most critical global-scale earth system processes. Hector has a three-part main carbon cycle: a one-pool atmosphere, three-pool land, and 4-pool ocean. The model’s terrestrial carbon cycle includes primary production and respiration fluxes, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector actively solves the inorganic carbon system in the surface ocean, directly calculating air– sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO<sub>2</sub>], radiative forcing, and surface temperatures. Hector’s flexibility, open-source nature, and modular design facilitate a broad range of research.
Currently the GCAM sectors interact with Hector via emissions. At every time step, emissions from GCAM are passed to Hector. Hector converts these emissions to concentrations when necessary, and calculates the associated radiative forcing, as well as the response of the climate system and earth system (e.g., temperature, carbon-fluxes, etc.). Hector's climate information can be used as a climate constraint for in a GCAM policy run. See Hector for more details.
- ↑ Hartin, C. A., Patel, P., Schwarber, A., Link, R. P., and Bond-Lamberty, B. P.: A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0, Geosci. Model Dev., 8, 939-955, doi:10.5194/gmd-8-939-2015, 2015.