GENeSYS-MOD: Difference between revisions

From IAMC-Documentation
Jump to navigation Jump to search
No edit summary
mNo edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 3: Line 3:
|Name=GENeSYS-MOD
|Name=GENeSYS-MOD
|Version=v3.0
|Version=v3.0
|ModelLink=https://git.tu-berlin.de/genesysmod/genesys-mod-public/-/releases/genesysmod3.0
|ModelLink=https://git.tu-berlin.de/genesysmod/genesys-mod-public/-/releases/genesysmod3.0; https://www.diw.de/de/diw_01.c.594278.de/publikationen/data_documentation/2018_0094/genesys-mod_v2.0_____enhancing_the_global_energy_system_mode___model_improvements__framework_changes__and_european_data_set.html; https://www.mdpi.com/1996-1073/10/10/1468
|participation=reference card only
|participation=reference card only
|processState=in preparation
|processState=published
}}
{{InstitutionTemplate
|abbr=TU Berlin
|institution=Technische Universität Berlin
|link=https://wip.tu-berlin.de/
|country=Germany
}}
{{InstitutionTemplate
|abbr=DIW Berlin
|institution=Deutsches Institut für Wirtschaftsforschung
|link=https://www.diw.de/
|country=Germany
}}
{{InstitutionTemplate
|abbr=EUF
|institution=Europa-Universität Flensburg
|link=https://www.uni-flensburg.de/eum
|country=Germany
}}
}}
{{ScopeMethodTemplate
{{ScopeMethodTemplate
Line 11: Line 29:
|GeographicalScopeOption=Global
|GeographicalScopeOption=Global
|Objective=GENeSYS-MOD is aimed at creating long-term pathways for the energy system, focusing on sector-coupling of the traditionally segregated sectors electricity, buildings, industry, and transport. To achieve this, GENeSYS-MOD minimizes the net-present value of the entire energy system towards 2050. As a result, the model provides the cost-optimal capacity expansion, mix and flow of energy carriers, and emission abatement, while taking into account flexibility options and climate targets.
|Objective=GENeSYS-MOD is aimed at creating long-term pathways for the energy system, focusing on sector-coupling of the traditionally segregated sectors electricity, buildings, industry, and transport. To achieve this, GENeSYS-MOD minimizes the net-present value of the entire energy system towards 2050. As a result, the model provides the cost-optimal capacity expansion, mix and flow of energy carriers, and emission abatement, while taking into account flexibility options and climate targets.
|SolutionConceptOption=Partial equilibrium (fixed demand)
|SolutionHorizonOption=Intertemporal optimization (foresight)
|SolutionHorizonOption=Intertemporal optimization (foresight)
|SolutionHorizon=recursive-dynamic (myopic)
|SolutionHorizon=recursive-dynamic (myopic)
Line 78: Line 97:
|ClimateChangeImpactsText=exogenous as part of exogenous energy demand developments
|ClimateChangeImpactsText=exogenous as part of exogenous energy demand developments
|Co-LinkagesOption=Energy security: Fossil fuel imports & exports (region)
|Co-LinkagesOption=Energy security: Fossil fuel imports & exports (region)
}}
{{InstitutionTemplate
|abbr=TU Berlin
|institution=Technische Universität Berlin
|link=https://wip.tu-berlin.de/
|country=Germany
}}
{{InstitutionTemplate
|abbr=DIW Berlin
|institution=Deutsches Institut für Wirtschaftsforschung
|link=https://www.diw.de/
|country=Germany
}}
{{InstitutionTemplate
|abbr=EUF
|institution=Europa-Universität Flensburg
|link=https://www.uni-flensburg.de/eum
|country=Germany
}}
}}

Latest revision as of 10:51, 5 April 2022

The reference card is a clearly defined description of model features. The numerous options have been organized into a limited amount of default and model specific (non default) options. In addition some features are described by a short clarifying text.

Legend:

  • not implemented
  • implemented
  • implemented (not default option)

A page refresh may be needed after modifying data.


About

Name and version

GENeSYS-MOD v3.0

Institution

Technische Universität Berlin (TU Berlin), Germany, https://wip.tu-berlin.de/., Deutsches Institut für Wirtschaftsforschung (DIW Berlin), Germany, https://www.diw.de/., Europa-Universität Flensburg (EUF), Germany, https://www.uni-flensburg.de/eum.

Documentation

GENeSYS-MOD documentation is limited and consists of a reference card

Process state

published





Model scope and methods

Model type

  • Integrated assessment model
  • Energy system model
  • CGE
  • CBA-integrated assessment model

Geographical scope

  • Global
  • Regional

Objective

GENeSYS-MOD is aimed at creating long-term pathways for the energy system, focusing on sector-coupling of the traditionally segregated sectors electricity, buildings, industry, and transport. To achieve this, GENeSYS-MOD minimizes the net-present value of the entire energy system towards 2050. As a result, the model provides the cost-optimal capacity expansion, mix and flow of energy carriers, and emission abatement, while taking into account flexibility options and climate targets.

Solution concept

  • Partial equilibrium (price elastic demand)
  • Partial equilibrium (fixed demand)
  • General equilibrium (closed economy)

Solution horizon

  • Recursive dynamic (myopic)
  • Intertemporal optimization (foresight)
  • recursive-dynamic (myopic)

Note: as potential user choice

Solution method

  • Simulation
  • Optimization
  • Linear optimisation


Temporal dimension

Base year:2015 / 2018, time steps:flexible, horizon: 2050

Note: Reduced hourly timeseries via a timeseries reduction algorithm (described here: https://doi.org/10.1016/j.apenergy.2019.113820 and here: https://www.diw.de/documents/publikationen/73/diw_01.c.558112.de/diw_datadoc_2017-088.pdf). Can be chosen by the user. Typically, the range of intra-yearly timesteps ranges between 18 and 120.

Spatial dimension

Number of regions:10

  1. Africa
  2. Asia-Rest
  3. China
  4. Europe
  5. India
  6. Middle East
  7. North America
  8. Oceania
  9. FSU
  10. South America

Note: Apart from the global model with 10 macro-regions, there are several more detailed regional applications at either country, or sub-country level (e.g. for Europe, Germany, China, India, Mexico, Japan, South Africa, etc). It is planned to combine these datasets in an upcoming version.

Time discounting type

  • Discount rate exogenous
  • Discount rate endogenous

Policies

  • Emission tax
  • Emission pricing
  • Cap and trade
  • Fuel taxes
  • Fuel subsidies
  • Feed-in-tariff
  • Portfolio standard
  • Capacity targets
  • Emission standards
  • Energy efficiency standards
  • Agricultural producer subsidies
  • Agricultural consumer subsidies
  • Land protection
  • Pricing carbon stocks
  • Phase out regulations
  • Emission reduction targets


Socio-economic drivers

Population

  • Yes (exogenous)
  • Yes (endogenous)

Population age structure

  • Yes (exogenous)
  • Yes (endogenous)

Education level

  • Yes (exogenous)
  • Yes (endogenous)

Urbanization rate

  • Yes (exogenous)
  • Yes (endogenous)

GDP

  • Yes (exogenous)
  • Yes (endogenous)

Income distribution

  • Yes (exogenous)
  • Yes (endogenous)

Employment rate

  • Yes (exogenous)
  • Yes (endogenous)

Labor productivity

  • Yes (exogenous)
  • Yes (endogenous)

Total factor productivity

  • Yes (exogenous)
  • Yes (endogenous)

Autonomous energy efficiency improvements

  • Yes (exogenous)
  • Yes (endogenous)



Macro-economy

Economic sector

Industry

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Energy

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Transportation

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Residential and commercial

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Agriculture

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Forestry

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)


Macro-economy

Trade

  • Coal
  • Oil
  • Gas
  • Uranium
  • Electricity
  • Bioenergy crops
  • Food crops
  • Capital
  • Emissions permits
  • Non-energy goods

Cost measures

  • GDP loss
  • Welfare loss
  • Consumption loss
  • Area under MAC
  • Energy system cost mark-up

Note: Total Energy System Costs (split into CAPEX, OPEX, Transmission, Storages, etc)

Categorization by group

  • Income
  • Urban - rural
  • Technology adoption
  • Age
  • Gender
  • Education level
  • Household size

Institutional and political factors

  • Early retirement of capital allowed
  • Interest rates differentiated by country/region
  • Regional risk factors included
  • Technology costs differentiated by country/region
  • Technological change differentiated by country/region
  • Behavioural change differentiated by country/region
  • Constraints on cross country financial transfers

Resource use

Coal

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Conventional Oil

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Unconventional Oil

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Conventional Gas

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Unconventional Gas

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Uranium

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Bioenergy

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Water

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Raw Materials

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Land

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)


Technological change

Energy conversion technologies

  • No technological change
  • Exogenous technological change
  • Endogenous technological change

Energy End-use

  • No technological change
  • Exogenous technological change
  • Endogenous technological change

Material Use

  • No technological change
  • Exogenous technological change
  • Endogenous technological change

Agriculture (tc)

  • No technological change
  • Exogenous technological change
  • Endogenous technological change



Energy


Energy technology substitution

Energy technology choice

  • No discrete technology choices
  • Logit choice model
  • Production function
  • Linear choice (lowest cost)
  • Lowest cost with adjustment penalties

Energy technology substitutability

  • Mostly high substitutability
  • Mostly low substitutability
  • Mixed high and low substitutability

Energy technology deployment

  • Expansion and decline constraints
  • System integration constraints

Energy

Electricity technologies

  • Coal w/o CCS
  • Coal w/ CCS
  • Gas w/o CCS
  • Gas w/ CCS
  • Oil w/o CCS
  • Oil w/ CCS
  • Bioenergy w/o CCS
  • Bioenergy w/ CCS
  • Geothermal power
  • Nuclear power
  • Solar power
  • Solar power-central PV
  • Solar power-distributed PV
  • Solar power-CSP
  • Wind power
  • Wind power-onshore
  • Wind power-offshore
  • Hydroelectric power
  • Ocean power

Hydrogen production

  • Coal to hydrogen w/o CCS
  • Coal to hydrogen w/ CCS
  • Natural gas to hydrogen w/o CCS
  • Natural gas to hydrogen w/ CCS
  • Oil to hydrogen w/o CCS
  • Oil to hydrogen w/ CCS
  • Biomass to hydrogen w/o CCS
  • Biomass to hydrogen w/ CCS
  • Nuclear thermochemical hydrogen
  • Solar thermochemical hydrogen
  • Electrolysis

Refined liquids

  • Coal to liquids w/o CCS
  • Coal to liquids w/ CCS
  • Gas to liquids w/o CCS
  • Gas to liquids w/ CCS
  • Bioliquids w/o CCS
  • Bioliquids w/ CCS
  • Oil refining

Refined gases

  • Coal to gas w/o CCS
  • Coal to gas w/ CCS
  • Oil to gas w/o CCS
  • Oil to gas w/ CCS
  • Biomass to gas w/o CCS
  • Biomass to gas w/ CCS

Heat generation

  • Coal heat
  • Natural gas heat
  • Oil heat
  • Biomass heat
  • Geothermal heat
  • Solarthermal heat
  • CHP (coupled heat and power)
  • Electric heat sources (e.g. resistance heating, heat pumps)

Grid Infra Structure

Electricity

  • Yes (aggregate)
  • Yes (spatially explicit)

Gas

  • Yes (aggregate)
  • Yes (spatially explicit)

Heat

  • Yes (aggregate)
  • Yes (spatially explicit)

CO2

  • Yes (aggregate)
  • Yes (spatially explicit)

Hydrogen

  • Yes (aggregate)
  • Yes (spatially explicit)


Energy end-use technologies

Passenger transportation

  • Passenger trains
  • Buses
  • Light Duty Vehicles (LDVs)
  • Electric LDVs
  • Hydrogen LDVs
  • Hybrid LDVs
  • Gasoline LDVs
  • Diesel LDVs
  • Passenger aircrafts

Freight transportation

  • Freight trains
  • Heavy duty vehicles
  • Freight aircrafts
  • Freight ships
  • Fuel-cell HDVs

Industry

  • Steel production
  • Aluminium production
  • Cement production
  • Petrochemical production
  • Paper production
  • Plastics production
  • Pulp production

Residential and commercial

  • Space heating
  • Space cooling
  • Cooking
  • Refrigeration
  • Washing
  • Lighting
  • Water heating


Land-use

Land cover

  • Cropland
  • Cropland irrigated
  • Cropland food crops
  • Cropland feed crops
  • Cropland energy crops
  • Forest
  • Managed forest
  • Natural forest
  • Pasture
  • Shrubland
  • Built-up area

Agriculture and forestry demands

  • Agriculture food
  • Agriculture food crops
  • Agriculture food livestock
  • Agriculture feed
  • Agriculture feed crops
  • Agriculture feed livestock
  • Agriculture non-food
  • Agriculture non-food crops
  • Agriculture non-food livestock
  • Agriculture bioenergy
  • Agriculture residues
  • Forest industrial roundwood
  • Forest fuelwood
  • Forest residues

Agricultural commodities

  • Wheat
  • Rice
  • Other coarse grains
  • Oilseeds
  • Sugar crops
  • Ruminant meat
  • Non-ruminant meat and eggs
  • Dairy products



Emission, climate and impacts

Greenhouse gases

  • CO2 fossil fuels
  • CO2 cement
  • CO2 land use
  • CH4 energy
  • CH4 land use
  • CH4 other
  • N2O energy
  • N2O land use
  • N2O other
  • CFCs
  • HFCs
  • SF6
  • PFCs

Pollutants

  • CO energy
  • CO land use
  • CO other
  • NOx energy
  • NOx land use
  • NOx other
  • VOC energy
  • VOC land use
  • VOC other
  • SO2 energy
  • SO2 land use
  • SO2 other
  • BC energy
  • BC land use
  • BC other
  • OC energy
  • OC land use
  • OC other
  • NH3 energy
  • NH3 land use
  • NH3 other

Climate indicators

  • Concentration: CO2
  • Concentration: CH4
  • Concentration: N2O
  • Concentration: Kyoto gases
  • Radiative forcing: CO2
  • Radiative forcing: CH4
  • Radiative forcing: N2O
  • Radiative forcing: F-gases
  • Radiative forcing: Kyoto gases
  • Radiative forcing: aerosols
  • Radiative forcing: land albedo
  • Radiative forcing: AN3A
  • Radiative forcing: total
  • Temperature change
  • Sea level rise
  • Ocean acidification

Carbon dioxide removal

  • Bioenergy with CCS
  • Reforestation
  • Afforestation
  • Soil carbon enhancement
  • Direct air capture
  • Enhanced weathering

Climate change impacts

  • Agriculture
  • Energy supply
  • Energy demand
  • Economic output
  • Built capital
  • Inequality

Note: exogenous as part of exogenous energy demand developments

Co-Linkages

  • Energy security: Fossil fuel imports & exports (region)
  • Energy access: Household energy consumption
  • Air pollution & health: Source-based aerosol emissions
  • Air pollution & health: Health impacts of air Pollution
  • Food access
  • Water availability
  • Biodiversity