Energy - TIAM-UCL: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 4: | Line 4: | ||
|DocumentationCategory=Energy | |DocumentationCategory=Energy | ||
}} | }} | ||
TIAM-UCL models all primary energy sources (oil, gas, coal, nuclear, biomass, and renewables) from resource production through to their conversion, infrastructure requirements, and finally to sectoral end-use. Note, throughout this section the term hurdle rate | TIAM-UCL models all primary energy sources (oil, gas, coal, nuclear, biomass, and renewables) from resource production through to their conversion, infrastructure requirements, and finally to sectoral end-use. Note, throughout this section the term hurdle rate is used to refer to a technology specific discount rate. That is, the model assumes that the payment of any capital cost is spread over an economic life that may be different from the technical life of the process, and annualized at a different rate than the overall discount rate. |
Latest revision as of 19:14, 14 December 2016
Corresponding documentation | |
---|---|
Previous versions | |
Model information | |
Model link | |
Institution | University College London (UCL), UK, https://www.ucl.ac.uk. |
Solution concept | Partial equilibrium (price elastic demand) |
Solution method | Linear optimisation |
Anticipation | Perfect Foresight
(Stochastic and myopic runs are also possible) |
TIAM-UCL models all primary energy sources (oil, gas, coal, nuclear, biomass, and renewables) from resource production through to their conversion, infrastructure requirements, and finally to sectoral end-use. Note, throughout this section the term hurdle rate is used to refer to a technology specific discount rate. That is, the model assumes that the payment of any capital cost is spread over an economic life that may be different from the technical life of the process, and annualized at a different rate than the overall discount rate.