MUSE

From IAMC-Documentation
Jump to navigation Jump to search

Reference card – MUSE

About

Documentation: MUSE documentation consists of a referencecard and detailed model documentation

Institution: Imperial College London (Imperial College London), UK, https://www.imperial.ac.uk/.

Model link: http://paris-reinforce.epu.ntua.gr/detailed_model_doc/muse

Name and version: MUSE 1.0

Process state: in preparation

Model scope and methods

Geographical scope: Global

Model type: Energy system model

Objective: MUSE is an agent-based energy systems model which simulates the decision-making process of firms and consumers in the energy system. It aims at capturing the multi-faceted aspects of the energy systems transitions in a realistic way as they would be affected by limited knowledge of the future and the technology readiness adopting a bottom-up approach to the technology description.

Policies: Emission tax, Emission pricing, Capacity targets, Emission standards, Energy efficiency standards

Solution concept: Partial equilibrium (price elastic demand)

Solution method: Simulation

Spatial dimension: Number of regions:28

Temporal dimension: Base year:2010, time steps:5 or 10, horizon: configurable (2050 or 2100)

Time discounting type: Discount rate exogenous

Socio-economic drivers

Education level: Yes (exogenous)

GDP: Yes (exogenous)

Population: Yes (exogenous)

Population age structure: Yes (exogenous)

Macro-economy

Energy

Electricity technologies: Coal w/o CCS, Coal w/ CCS, Gas w/o CCS, Gas w/ CCS, Oil w/o CCS, Bioenergy w/o CCS, Bioenergy w/ CCS, Geothermal power, Nuclear power, Solar power-central PV, Solar power-distributed PV, Solar power-CSP, Wind power, Wind power-onshore, Wind power-offshore, Hydroelectric power, Ocean power

Energy technology choice: Lowest cost with adjustment penalties

Energy technology deployment: Expansion and decline constraints, System integration constraints

Energy technology substitutability: Mixed high and low substitutability

Freight transportation: Freight trains, Heavy duty vehicles, Freight aircrafts, Freight ships

Heat generation: Coal heat, Natural gas heat, Oil heat, Biomass heat, Geothermal heat, Solarthermal heat, CHP (coupled heat and power)

Hydrogen production: Coal to hydrogen w/o CCS, Coal to hydrogen w/ CCS, Natural gas to hydrogen w/o CCS, Natural gas to hydrogen w/ CCS, Biomass to hydrogen w/o CCS, Biomass to hydrogen w/ CCS

Industry: Paper production

Passenger transportation: Passenger trains, Buses, Light Duty Vehicles (LDVs), Electric LDVs, Hydrogen LDVs, Hybrid LDVs, Gasoline LDVs, Diesel LDVs, Passenger aircrafts

Refined liquids: Coal to liquids w/o CCS, Coal to liquids w/ CCS, Gas to liquids w/o CCS, Gas to liquids w/ CCS, Bioliquids w/o CCS, Bioliquids w/ CCS, Oil refining

Residential and commercial: Space heating, Space cooling, Cooking, Refrigeration, Washing, Lighting

Land-use

Agriculture and forestry demands: Agriculture food, Agriculture food crops, Agriculture food livestock, Agriculture bioenergy, Agriculture residues, Forest industrial roundwood, Forest residues

Land cover: Cropland food crops, Cropland energy crops, Managed forest, Natural forest, Pasture

Emission, climate and impacts

Carbon dioxide removal: Bioenergy with CCS

Greenhouse gases: CO2 fossil fuels, CO2 cement, CO2 land use, CH4 energy, CH4 land use, N2O energy, N2O land use

The reference card is a clearly defined description of model features. The numerous options have been organized into a limited amount of default and model specific (non default) options. In addition some features are described by a short clarifying text.

Legend:

  • not implemented
  • implemented
  • implemented (not default option)

A page refresh may be needed after modifying data.


About

Name and version

MUSE 1.0

Institution

Imperial College London (Imperial College London), UK, https://www.imperial.ac.uk/.

Documentation

MUSE documentation consists of a referencecard and detailed model documentation

Process state

in preparation


Model scope and methods

Model documentation: Model_scope_and_methods - MUSE

Model type

  • Integrated assessment model
  • Energy system model
  • CGE
  • CBA-integrated assessment model

Geographical scope

  • Global
  • Regional

Objective

MUSE is an agent-based energy systems model which simulates the decision-making process of firms and consumers in the energy system. It aims at capturing the multi-faceted aspects of the energy systems transitions in a realistic way as they would be affected by limited knowledge of the future and the technology readiness adopting a bottom-up approach to the technology description.

Solution concept

  • Partial equilibrium (price elastic demand)
  • Partial equilibrium (fixed demand)
  • General equilibrium (closed economy)

Solution horizon

  • Recursive dynamic (myopic)
  • Intertemporal optimization (foresight)

Note: recursive-dynamic (limited foresight)

Solution method

  • Simulation
  • Optimization


Temporal dimension

Base year:2010, time steps:5 or 10, horizon: configurable (2050 or 2100)

Note: configurable

Spatial dimension

Number of regions:28

  1. Adjacent Europe
  2. ASEAN
  3. Caspian Region
  4. Australia & New Zealand
  5. Brazil
  6. Canada
  7. Chile
  8. China
  9. Denmark
  10. Eastern Europe
  11. Emerging Asia
  12. Emerging Latin America
  13. Finalnd
  14. India
  15. Israel
  16. Japan
  17. South Korea
  18. Middle East
  19. Mexico
  20. North & Central Africa
  21. Norway
  22. Other EMerging Europe
  23. Russia
  24. Sweden
  25. United States of America
  26. South Africa
  27. Iceland
  28. Western Europe

Time discounting type

  • Discount rate exogenous
  • Discount rate endogenous

Policies

  • Emission tax
  • Emission pricing
  • Cap and trade
  • Fuel taxes
  • Fuel subsidies
  • Feed-in-tariff
  • Portfolio standard
  • Capacity targets
  • Emission standards
  • Energy efficiency standards
  • Agricultural producer subsidies
  • Agricultural consumer subsidies
  • Land protection
  • Pricing carbon stocks


Socio-economic drivers

Model documentation: Socio-economic drivers - MUSE

Population

  • Yes (exogenous)
  • Yes (endogenous)

Population age structure

  • Yes (exogenous)
  • Yes (endogenous)

Education level

  • Yes (exogenous)
  • Yes (endogenous)

Urbanization rate

  • Yes (exogenous)
  • Yes (endogenous)

GDP

  • Yes (exogenous)
  • Yes (endogenous)

Income distribution

  • Yes (exogenous)
  • Yes (endogenous)

Employment rate

  • Yes (exogenous)
  • Yes (endogenous)

Labor productivity

  • Yes (exogenous)
  • Yes (endogenous)

Total factor productivity

  • Yes (exogenous)
  • Yes (endogenous)

Autonomous energy efficiency improvements

  • Yes (exogenous)
  • Yes (endogenous)

Other socio economic driver

Note: Granularity of the socio-economic drivers is sector-dependent


Macro-economy

Model documentation: Macro-economy - MUSE

Economic sector

Industry

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Energy

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Transportation

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Residential and commercial

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Agriculture

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Forestry

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)


Macro-economy

Trade

  • Coal
  • Oil
  • Gas
  • Uranium
  • Electricity
  • Bioenergy crops
  • Food crops
  • Capital
  • Emissions permits
  • Non-energy goods
  • Refined Liquid Fuels

Cost measures

  • GDP loss
  • Welfare loss
  • Consumption loss
  • Area under MAC
  • Energy system cost mark-up

Categorization by group

  • Income
  • Urban - rural
  • Technology adoption
  • Age
  • Gender
  • Education level
  • Household size

Institutional and political factors

  • Early retirement of capital allowed
  • Interest rates differentiated by country/region
  • Regional risk factors included
  • Technology costs differentiated by country/region
  • Technological change differentiated by country/region
  • Behavioural change differentiated by country/region
  • Constraints on cross country financial transfers

Resource use

Coal

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Conventional Oil

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Unconventional Oil

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Conventional Gas

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Unconventional Gas

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Uranium

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Bioenergy

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Water

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Raw Materials

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Land

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)


Technological change

Energy conversion technologies

  • No technological change
  • Exogenous technological change
  • Endogenous technological change

Energy End-use

  • No technological change
  • Exogenous technological change
  • Endogenous technological change

Material Use

  • No technological change
  • Exogenous technological change
  • Endogenous technological change

Agriculture (tc)

  • No technological change
  • Exogenous technological change
  • Endogenous technological change



Energy

Model documentation: Energy - MUSE


Energy technology substitution

Energy technology choice

  • No discrete technology choices
  • Logit choice model
  • Production function
  • Linear choice (lowest cost)
  • Lowest cost with adjustment penalties

Note: Technology choice depends on agents' preferences: minimization/maximisation of one objective, or weighted average sum of objectives, lexicographic methods

Energy technology substitutability

  • Mostly high substitutability
  • Mostly low substitutability
  • Mixed high and low substitutability

Note: Discrete technology choices with mostly high substitutability in some sectors and mostly low substitutability in other sectors

Energy technology deployment

  • Expansion and decline constraints
  • System integration constraints

Energy

Electricity technologies

  • Coal w/o CCS
  • Coal w/ CCS
  • Gas w/o CCS
  • Gas w/ CCS
  • Oil w/o CCS
  • Oil w/ CCS
  • Bioenergy w/o CCS
  • Bioenergy w/ CCS
  • Geothermal power
  • Nuclear power
  • Solar power
  • Solar power-central PV
  • Solar power-distributed PV
  • Solar power-CSP
  • Wind power
  • Wind power-onshore
  • Wind power-offshore
  • Hydroelectric power
  • Ocean power

Hydrogen production

  • Coal to hydrogen w/o CCS
  • Coal to hydrogen w/ CCS
  • Natural gas to hydrogen w/o CCS
  • Natural gas to hydrogen w/ CCS
  • Oil to hydrogen w/o CCS
  • Oil to hydrogen w/ CCS
  • Biomass to hydrogen w/o CCS
  • Biomass to hydrogen w/ CCS
  • Nuclear thermochemical hydrogen
  • Solar thermochemical hydrogen
  • Electrolysis

Refined liquids

  • Coal to liquids w/o CCS
  • Coal to liquids w/ CCS
  • Gas to liquids w/o CCS
  • Gas to liquids w/ CCS
  • Bioliquids w/o CCS
  • Bioliquids w/ CCS
  • Oil refining

Refined gases

  • Coal to gas w/o CCS
  • Coal to gas w/ CCS
  • Oil to gas w/o CCS
  • Oil to gas w/ CCS
  • Biomass to gas w/o CCS
  • Biomass to gas w/ CCS

Heat generation

  • Coal heat
  • Natural gas heat
  • Oil heat
  • Biomass heat
  • Geothermal heat
  • Solarthermal heat
  • CHP (coupled heat and power)

Grid Infra Structure

Electricity

  • Yes (aggregate)
  • Yes (spatially explicit)

Gas

  • Yes (aggregate)
  • Yes (spatially explicit)

Heat

  • Yes (aggregate)
  • Yes (spatially explicit)

CO2

  • Yes (aggregate)
  • Yes (spatially explicit)

Hydrogen

  • Yes (aggregate)
  • Yes (spatially explicit)


Energy end-use technologies

Passenger transportation

  • Passenger trains
  • Buses
  • Light Duty Vehicles (LDVs)
  • Electric LDVs
  • Hydrogen LDVs
  • Hybrid LDVs
  • Gasoline LDVs
  • Diesel LDVs
  • Passenger aircrafts

Freight transportation

  • Freight trains
  • Heavy duty vehicles
  • Freight aircrafts
  • Freight ships

Industry

  • Steel production
  • Aluminium production
  • Cement production
  • Petrochemical production
  • Paper production
  • Plastics production
  • Pulp production
  • Chemicals
  • Fertilisers
  • Iron and steel
  • Non-ferrous metals
  • Other Industries
  • Pulp and paper

Note: Non-metallic minerals

Residential and commercial

  • Space heating
  • Space cooling
  • Cooking
  • Refrigeration
  • Washing
  • Lighting


Land-use

Model documentation: Land-use - MUSE

Land cover

  • Cropland
  • Cropland irrigated
  • Cropland food crops
  • Cropland feed crops
  • Cropland energy crops
  • Forest
  • Managed forest
  • Natural forest
  • Pasture
  • Shrubland
  • Built-up area

Agriculture and forestry demands

  • Agriculture food
  • Agriculture food crops
  • Agriculture food livestock
  • Agriculture feed
  • Agriculture feed crops
  • Agriculture feed livestock
  • Agriculture non-food
  • Agriculture non-food crops
  • Agriculture non-food livestock
  • Agriculture bioenergy
  • Agriculture residues
  • Forest industrial roundwood
  • Forest fuelwood
  • Forest residues

Agricultural commodities

  • Wheat
  • Rice
  • Other coarse grains
  • Oilseeds
  • Sugar crops
  • Ruminant meat
  • Non-ruminant meat and eggs
  • Dairy products



Emission, climate and impacts

Model documentation: Emissions - MUSEClimate - MUSENon-climate sustainability dimension - MUSE

Greenhouse gases

  • CO2 fossil fuels
  • CO2 cement
  • CO2 land use
  • CH4 energy
  • CH4 land use
  • CH4 other
  • N2O energy
  • N2O land use
  • N2O other
  • CFCs
  • HFCs
  • SF6
  • PFCs

Pollutants

  • CO energy
  • CO land use
  • CO other
  • NOx energy
  • NOx land use
  • NOx other
  • VOC energy
  • VOC land use
  • VOC other
  • SO2 energy
  • SO2 land use
  • SO2 other
  • BC energy
  • BC land use
  • BC other
  • OC energy
  • OC land use
  • OC other
  • NH3 energy
  • NH3 land use
  • NH3 other

Climate indicators

  • Concentration: CO2
  • Concentration: CH4
  • Concentration: N2O
  • Concentration: Kyoto gases
  • Radiative forcing: CO2
  • Radiative forcing: CH4
  • Radiative forcing: N2O
  • Radiative forcing: F-gases
  • Radiative forcing: Kyoto gases
  • Radiative forcing: aerosols
  • Radiative forcing: land albedo
  • Radiative forcing: AN3A
  • Radiative forcing: total
  • Temperature change
  • Sea level rise
  • Ocean acidification

Carbon dioxide removal

  • Bioenergy with CCS
  • Reforestation
  • Afforestation
  • Soil carbon enhancement
  • Direct air capture
  • Enhanced weathering

Climate change impacts

  • Agriculture
  • Energy supply
  • Energy demand
  • Economic output
  • Built capital
  • Inequality

Co-Linkages

  • Energy security: Fossil fuel imports & exports (region)
  • Energy access: Household energy consumption
  • Air pollution & health: Source-based aerosol emissions
  • Air pollution & health: Health impacts of air Pollution
  • Food access
  • Water availability
  • Biodiversity