References - REMIND-MAgPIE: Difference between revisions
Laura Delsa (talk | contribs) No edit summary |
Laura Delsa (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
{{ModelDocumentationTemplate | {{ModelDocumentationTemplate | ||
|IsEmpty=No | |||
|IsDocumentationOf=REMIND | |IsDocumentationOf=REMIND | ||
|DocumentationCategory=References | |DocumentationCategory=References | ||
}} | }} | ||
Aguilera RF, Eggert RG, C. C. GL, Tilton JE (2009) Depletion and the Future Availability of Petroleum Resources. The Energy Journal Volume 30: | Aguilera RF, Eggert RG, C. C. GL, Tilton JE (2009) Depletion and the Future Availability of Petroleum Resources. The Energy Journal Volume 30:141–174. | ||
Amann M, Bertok I, Borken-Kleefeld J, et al (2011) Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environmental Modelling & Software 26:1489–1501. doi: 10.1016/j.envsoft.2011.07.012 | |||
Ansolabehere S, Beer J, Deutch J, et al (2007) The Future of Coal: An Interdisciplinary MIT Study. Massachusetts Institute of Technology, Cambridge, Massachusetts | Ansolabehere S, Beer J, Deutch J, et al (2007) The Future of Coal: An Interdisciplinary MIT Study. Massachusetts Institute of Technology, Cambridge, Massachusetts | ||
Askari H, Krichene N (2010) An oil demand and supply model incorporating monetary policy. Energy 35:2013–2021. doi: 10.1016/j.energy.2010.01.017 | |||
Askari H, Krichene N (2010) An oil demand and supply model incorporating monetary policy. Energy 35: | Bauer N (2005) Carbon capture and sequestration: An option to buy time? Ph.D. Thesis, University of Potsdam | ||
Bauer N, Baumstark L, Leimbach M (2012a) The REMIND-R model: the role of renewables in the low-carbon transformation—first-best vs. second-best worlds. Climatic Change 114:145–168. doi: 10.1007/s10584-011-0129-2 | |||
Bauer N (2005) Carbon capture and sequestration: An option to buy time | Bauer N, Brecha RJ, Luderer G (2012b) Economics of nuclear power and climate change mitigation policies. PNAS 109:16805–16810. doi: 10.1073/pnas.1201264109 | ||
Bauer N, Edenhofer O, Kypreos S (2008) Linking energy system and macroeconomic growth models. CMS 5:95–117. doi: 10.1007/s10287-007-0042-3 | |||
Bauer N, Baumstark L, Leimbach M (2012a) The REMIND-R model: the role of renewables in the low-carbon | Bauer N, Hilaire J, Brecha RJ, et al (under review) Assessing global fossil fuel availability in a scenario framework, in preparation. | ||
Bauer N, Mouratiadou I, Luderer G, et al (2013) Global fossil energy markets and climate change mitigation – an analysis with REMIND. Climatic Change in press. doi: 10.1007/s10584-013-0901-6 | |||
Bauer N, Brecha RJ, Luderer G (2012b) Economics of nuclear power and climate change mitigation policies. PNAS 109: | |||
Bauer N, Edenhofer O, Kypreos S (2008) Linking energy system and macroeconomic growth models. CMS 5: | |||
Bauer N, Mouratiadou I, Luderer G, et al (2013) Global fossil energy markets and climate change mitigation | |||
BGR (2010) Reserven, Ressourcen und Verfügbarkeit von Energierohstoffen 2010 - Kurzstudie. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover, Germany | BGR (2010) Reserven, Ressourcen und Verfügbarkeit von Energierohstoffen 2010 - Kurzstudie. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover, Germany | ||
Brooke A, Kendrick D, Meeraus M (1992) GAMS - A User’s Guide, Release 2.25. The Scientific Press, San Francisco | |||
Brown D, Gassner M, Fuchino T, Marechal F (2009) Thermo-economic analysis for the optimal conceptual design of biomass gasification energy conversion systems. Applied Thermal Engineering 29: | Brown D, Gassner M, Fuchino T, Marechal F (2009) Thermo-economic analysis for the optimal conceptual design of biomass gasification energy conversion systems. Applied Thermal Engineering 29:2137–2152. | ||
Brückl O (2005) Global Potential for electricity production from wind energy. | |||
Brückl O (2005) Global Potential for electricity production from wind energy. | Chen C, Rubin ES (2009) CO2 control technology effects on IGCC plant performance and cost. Energy Policy 37:915–924. doi: 10.1016/j.enpol.2008.09.093 | ||
Chum H, Faaij A, Moreira J, et al (2011) Bioenergy. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)],. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, | |||
Chen C, Rubin ES (2009) CO2 control technology effects on IGCC plant performance and cost. Energy Policy 37: | Dahl C, Duggan TE (1998) Survey of price elasticities from economic exploration models of US oil and gas supply. Journal of Energy Finance & Development 3:129–169. doi: 10.1016/S1085-7443(99)80072-6 | ||
Dellink et al. (2015) Long-term growth projections in Shared Socioeconomic Pathways. Submitted to Global Environmental Change (submitted). | |||
Chum H, Faaij A, Moreira J, et al (2011) Bioenergy. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)],. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, | Drud AS (1994) CONOPT - A Large-Scale GRG Code. ORSA Journal on Computing 6:207–216. | ||
EDGAR (2011) Global Emissions EDGAR v4.2. http://edgar.jrc.ec.europa.eu/overview.php?v=42. Accessed 25 Jan 2013 | |||
Dahl C, Duggan TE (1998) Survey of price elasticities from economic exploration models of US oil and gas supply. Journal of Energy Finance & | EEA (2009) Europe’s onshore and offshore wind energy potential - An assessment of environmental and economical constraints. | ||
Fargione J, Hill J, Tilman D, et al (2008) Land Clearing and the Biofuel Carbon Debt. Science 319:1235–1238. doi: 10.1126/science.1152747 | |||
Dellink et al. (2015) Long-term growth projections in Shared Socioeconomic Pathways. Submitted to Global Environmental Change (submitted). | Gül T, Kypreos S, Barreto L (2007) Hydrogen and Biofuels – A Modelling Analysis of Competing Energy Carriers for Western Europe. In: Proceedings of the World Energy Congress “Energy Future in an Interdependent World”. 11–15 November 2007, Rome, Italy. | ||
Haberl H, Beringer T, Bhattacharya SC, et al (2010) The global technical potential of bio-energy in 2050 considering sustainability constraints. Current Opinion in Environmental Sustainability 2:394–403. doi: 10.1016/j.cosust.2010.10.007 | |||
EEA (2009) | |||
Fargione J, Hill J, Tilman D, et al (2008) Land Clearing and the Biofuel Carbon Debt. Science 319: | |||
Gül T, Kypreos S, Barreto L (2007) Hydrogen and Biofuels | |||
Haberl H, Beringer T, Bhattacharya SC, et al (2010) The global technical potential of bio-energy in 2050 considering sustainability constraints. Current Opinion in Environmental Sustainability 2: | |||
Hamelinck C (2004) Outlook for advanced biofuels. Ph.D. Thesis, University of Utrecht | Hamelinck C (2004) Outlook for advanced biofuels. Ph.D. Thesis, University of Utrecht | ||
Heckscher EF, Ohlin B, Flam H, Flanders MJ (1991) Heckscher-Ohlin trade theory. MIT Press, Cambridge, Massachusetts | Heckscher EF, Ohlin B, Flam H, Flanders MJ (1991) Heckscher-Ohlin trade theory. MIT Press, Cambridge, Massachusetts | ||
Herfindahl OC (1967) Depletion and Economic Theory. In: Extractive Resources and Taxation. M. Gaffney (Ed.), University of Wisconsin Press, Madison, Wisconsin, | |||
Herfindahl OC (1967) Depletion and Economic Theory. Extractive Resources and Taxation. M. Gaffney (Ed.), University of Wisconsin Press, Madison, Wisconsin, | |||
Hoogwijk M (2004) On the global and regional potential of renewable energy sources. Ph.D. Thesis, Universiteit Utrecht, Faculteit Scheikunde | Hoogwijk M (2004) On the global and regional potential of renewable energy sources. Ph.D. Thesis, Universiteit Utrecht, Faculteit Scheikunde | ||
Hoogwijk M, Graus W (2008) Global potential of renewable energy sources: a literature assessment. Ecofys | Hoogwijk M, Graus W (2008) Global potential of renewable energy sources: a literature assessment. Ecofys | ||
Horlacher H-B (2003) Globale Potenziale der Wasserkraft. Externe Expertise für das WBGU-Hauptgutachten 2003 “Welt im Wandel: Energiewende zur Nachhaltigkeit.” WBGU, Heidelberg, Germany | |||
Horlacher H-B (2003) Globale Potenziale der Wasserkraft. Externe Expertise für das WBGU-Hauptgutachten 2003 | IEA (2008a) World Energy Outlook 2008. International Energy Agency | ||
IEA (2009) World Energy Outlook 2009. International Energy Agency, Paris, France | |||
IEA (2007a) Energy Balances of OECD Countries. International Energy Agency, Paris | IEA (2007a) Energy Balances of OECD Countries. International Energy Agency, Paris | ||
IEA (2007b) Energy Balances of non-OECD Countries. International Energy Agency, Paris | IEA (2007b) Energy Balances of non-OECD Countries. International Energy Agency, Paris | ||
IEA (2008b) CO2 Capture and Storage – A key carbon abatement option. International Energy Agency | |||
IEA ( | IHS CERA (2012) Upstream Capital Cost Index (UCCI) and Upstream Operating Cost Index (UOCI). In: IHS Indexes. http://www.ihs.com/info/cera/ihsindexes/index.aspx. Accessed 20 Nov 2012 | ||
Iwasaki W (2003) A consideration of the economic efficiency of hydrogen production from biomass. International Journal of Hydrogen Energy 28:939–944. | |||
IHS CERA (2012) Upstream Capital Cost Index (UCCI) and Upstream Operating Cost Index (UOCI). In: IHS Indexes. | |||
Iwasaki W (2003) A consideration of the economic efficiency of hydrogen production from biomass. International Journal of Hydrogen Energy 28: | |||
Junginger HM, Lako P, Lensink S, et al (2008) Technological learning in the energy sector. MNP | Junginger HM, Lako P, Lensink S, et al (2008) Technological learning in the energy sector. MNP | ||
KC S, Lutz W (2016) The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Global Environmental Change in press. doi: 10.1016/j.gloenvcha.2014.06.004 | |||
KC S, Lutz W ( | |||
Klein D, Humpenöder F, Bauer N, et al (2014) The global economic long-term potential of modern biomass in a climate-constrained world. Environ Res Lett 9:074017. doi: 10.1088/1748-9326/9/7/074017 | Klein D, Humpenöder F, Bauer N, et al (2014) The global economic long-term potential of modern biomass in a climate-constrained world. Environ Res Lett 9:074017. doi: 10.1088/1748-9326/9/7/074017 | ||
Klimantos P, Koukouzas N, Katsiadakis A, Kakaras E (2009) Air-blown biomass gasification combined cycles: System analysis and economic assessment. Energy 34:708–714. | |||
Klimantos P, Koukouzas N, Katsiadakis A, Kakaras E (2009) Air-blown biomass gasification combined cycles: System analysis and economic assessment. Energy 34: | Klimont Z, Hoglund L, Heyes C, et al (in prep.b) Global scenarios of air pollutants and methane: 1990-2050. | ||
Klimont Z, Kupiainen K, Heyes C, et al (in prep.a) Global anthropogenic emissions of particulate matter including black carbon. | |||
Krichene N (2002) World crude oil and natural gas: a demand and supply model. Energy Economics 24: | Krichene N (2002) World crude oil and natural gas: a demand and supply model. Energy Economics 24:557–576. doi: 10.1016/S0140-9883(02)00061-0 | ||
Kyle P, Davies EGR, Dooley JJ, et al (2013) Influence of climate change mitigation technology on global demands of water for electricity generation. International Journal of Greenhouse Gas Control 13:112–123. doi: 10.1016/j.ijggc.2012.12.006 | |||
Leimbach M, Bauer N, Baumstark L, Edenhofer O ( | Leimbach M, Bauer N, Baumstark L, et al (2010a) Technological Change and International Trade - Insights from REMIND-R. The Energy Journal 31:109–136. doi: 10.5547/ISSN0195-6574-EJ-Vol31-NoSI-5 | ||
Leimbach M, Bauer N, Baumstark L, Edenhofer O (2010b) Mitigation Costs in a Globalized World: Climate Policy Analysis with REMIND-R. Environ Model Assess 15:155–173. doi: 10.1007/s10666-009-9204-8 | |||
Lotze-Campen H, Müller C, Bondeau A, et al (2008) Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agricultural Economics 39: | Leimbach M, Baumstark L, Luderer G (2015a) The role of time preferences in explaining long-term pattern of international trade. Global Economy Journal 15:83–106. doi: 10.1515/gej-2014-0035 | ||
Leimbach M, Schultes A, Baumstark L, et al (2015b) Solution algorithms of large‐scale Integrated Assessment models on climate change. Submitted to Annals of Operations Research. | |||
Lotze-Campen H, Popp A, Beringer T, et al (2010) Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade. Ecological Modelling 221: | Lotze-Campen H, Müller C, Bondeau A, et al (2008) Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agricultural Economics 39:325–338. doi: 10.1111/j.1574-0862.2008.00336.x | ||
Lotze-Campen H, Popp A, Beringer T, et al (2010) Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade. Ecological Modelling 221:2188–2196. doi: 10.1016/j.ecolmodel.2009.10.002 | |||
Lucas PL, van Vuuren DP, Olivier JGJ, den Elzen MGJ (2007) Long-term reduction potential of non-CO2 greenhouse gases. Environmental Science & | Lu X, McElroy MB, Kiviluoma J (2009) Global potential for wind-generated electricity. PNAS 106:10933–10938. doi: 10.1073/pnas.0904101106 | ||
Lucas PL, van Vuuren DP, Olivier JGJ, den Elzen MGJ (2007) Long-term reduction potential of non-CO2 greenhouse gases. Environmental Science & Policy 10:85–103. doi: 10.1016/j.envsci.2006.10.007 | |||
Luderer G, Krey V, Calvin K, et al (2014) The role of renewable energy in climate stabilization: results from the EMF27 scenarios. Climatic Change 123: | Luderer G, Krey V, Calvin K, et al (2014) The role of renewable energy in climate stabilization: results from the EMF27 scenarios. Climatic Change 123:427–441. doi: 10.1007/s10584-013-0924-z | ||
Luderer G, Leimbach M, Bauer N, et al (2013) Description of the REMIND Model (Version 1.5). SSRN Working Paper 2312844 | Luderer G, Leimbach M, Bauer N, et al (2013) Description of the REMIND Model (Version 1.5). SSRN Working Paper 2312844 | ||
Luderer G, Pietzcker RC, Kriegler E, et al (2012) Asia’s role in mitigating climate change: A technology and sector specific analysis with ReMIND-R. Energy Economics 34:S378–S390. | |||
Luderer G, Pietzcker RC, Kriegler E, et al (2012) | Macknick J, Newmark R, Heath G, Hallett KC (2011) A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies. National Renewable Energy Laboratory, Golden, Colorado | ||
Macknick J, Sattler, S., Averyt, K., et al (2012) The water implications of generating electricity: water use across the United States based on different electricity pathways through 2050. Environmental Research Letters 7:045803. | |||
Manne A, Mendelsohn R, Richels R (1995) MERGE: A model for evaluating regional and global effects of GHG reduction policies. Energy Policy 23:17–34. doi: 10.1016/0301-4215(95)90763-W | |||
Manne AS, Rutherford TF (1994) International Trade in Oil, Gas and Carbon Emission Rights: An Intertemporal General Equilibrium Model. The Energy Journal Volume15:57–76. | |||
Manne A, Mendelsohn R, Richels R (1995) MERGE: A model for evaluating regional and global effects of GHG reduction policies. Energy Policy 23: | Meinshausen M, S. C. B. Raper, T. M. L. Wigley (2011a) Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6–Part 1: Model description and calibration. Atmos Chem Phys 11:1417–1456. doi: 10.5194/acp-11-1417-2011 | ||
Meinshausen M, Wigley TML, Raper SCB (2011b) Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part 2: Applications. Atmos Chem Phys 11:1457–1471. doi: 10.5194/acp-11-1457-2011 | |||
Manne AS, Rutherford TF (1994) International Trade in Oil, Gas and Carbon Emission Rights: An Intertemporal General Equilibrium Model. The Energy Journal Volume15: | Mouratiadou I, Bevione M, Bijl D, et al (submitted) The water-electricity nexus in deep decarbonization scenarios: a multi-model assessment. | ||
Mouratiadou I, Biewald A, Pehl M, et al (2016) The impact of climate change mitigation on water demand for energy and food: An integrated analysis based on the Shared Socioeconomic Pathways. Environmental Science & Policy 64:48–58. doi: 10.1016/j.envsci.2016.06.007 | |||
Meinshausen M, S. C. B. Raper, T. M. L. Wigley (2011a) Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, | |||
Meinshausen M, Wigley TML, Raper SCB (2011b) Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 | |||
NEA (2009) Uranium 2009: Resources, Production and Demand. OECD | NEA (2009) Uranium 2009: Resources, Production and Demand. OECD | ||
Negishi T (1972) General equilibrium theory and international trade. North-Holland Publishing Company Amsterdam, London | Negishi T (1972) General equilibrium theory and international trade. North-Holland Publishing Company Amsterdam, London | ||
Neij L, Andersen PD, Durstewitz M, et al (2003) Experience Curves: A Tool for Energy Policy Assessment (Extool Final Report). Lund University, Risø National Laboratory, ISET | Neij L, Andersen PD, Durstewitz M, et al (2003) Experience Curves: A Tool for Energy Policy Assessment (Extool Final Report). Lund University, Risø National Laboratory, ISET | ||
Nitsch J, Krewitt W, Nast M, et al (2004) Ökologisch optimierter Ausbau der Nutzung erneuerbarer Energien in Deutschland (Kurzfassung). BMU, DLR, ifeu, Wuppertal Institut, Stuttgart, Heidelberg, Wuppertal | Nitsch J, Krewitt W, Nast M, et al (2004) Ökologisch optimierter Ausbau der Nutzung erneuerbarer Energien in Deutschland (Kurzfassung). BMU, DLR, ifeu, Wuppertal Institut, Stuttgart, Heidelberg, Wuppertal | ||
Nordhaus WD, Boyer J (2000) Warming the World: Economic Models of Global Warming. MIT Press, Cambridge, MA | Nordhaus WD, Boyer J (2000) Warming the World: Economic Models of Global Warming. MIT Press, Cambridge, MA | ||
Nordhaus WD, Yang Z (1996) A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies. The American Economic Review 86:741–765. | |||
Nordhaus WD, Yang Z (1996) A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies. The American Economic Review 86: | O’Neill BC, Kriegler E, Riahi K, et al (2014) A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122:387–400. doi: 10.1007/s10584-013-0905-2 | ||
Pietzcker RC, Longden T, Chen W, et al (2014a) Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models. Energy 64:95–108. doi: 10.1016/j.energy.2013.08.059 | |||
Pietzcker RC, Longden T, Chen W, et al (2014a) Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models. Energy 64: | Pietzcker RC, Stetter D, Manger S, Luderer G (2014b) Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power. Applied Energy 135:704–720. doi: 10.1016/j.apenergy.2014.08.011 | ||
Popp A, Lotze-Campen H, Bodirsky B (2010) Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Global Environmental Change 20:451–462. doi: 10.1016/j.gloenvcha.2010.02.001 | |||
Pietzcker RC, Stetter D, Manger S, Luderer G (2014b) Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power. Applied Energy 135: | |||
Popp A, Lotze-Campen H, Bodirsky B (2010) Food consumption, diet shifts and associated non-CO2 greenhouse | |||
Ragettli M (2007) Cost outlook for the production of biofuels. Diploma Thesis, Swiss Federal Institute of Technology | Ragettli M (2007) Cost outlook for the production of biofuels. Diploma Thesis, Swiss Federal Institute of Technology | ||
Rogner H-H (1997) An assessment of world hydrocarbon ressources. Annual Review of Energy and the Environment 22:217–262. doi: 10.1146/annurev.energy.22.1.217 | |||
Rogner H-H (1997) An assessment of world hydrocarbon ressources. Annual Review of Energy and the Environment 22: | Rogner H-H, Aguilera RF, Archer CL, et al (2012) Chapter 7: Energy Resources and Potentials. In: Zou J (ed) Global Energy Assessment - Toward a Sustainable Future. Cambridge University Press, Cambridge, UK, pp 425–512 | ||
Rubin ES, Chen C, Rao AB (2007) Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy 35:4444–4454. doi: 10.1016/j.enpol.2007.03.009 | |||
Rogner H-H, Aguilera RF, Archer CL, et al (2012) Energy Resources and Potentials. In: Zou J (ed) Global Energy Assessment - Toward a Sustainable Future. Cambridge University Press, Cambridge, UK, pp | |||
Rubin ES, Chen C, Rao AB (2007) Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy 35: | |||
Schulz T (2007) Intermediate steps towards the 2000-Watt society in Switzerland: an energy-economic scenario analysis. PhD Thesis, Swiss Federal Institute of Technology (ETH) | Schulz T (2007) Intermediate steps towards the 2000-Watt society in Switzerland: an energy-economic scenario analysis. PhD Thesis, Swiss Federal Institute of Technology (ETH) | ||
Schwanitz VJ, Piontek F, Bertram C, Luderer G (2014) Long-term climate policy implications of phasing out fossil fuel subsidies. Energy Policy 67:882–894. doi: 10.1016/j.enpol.2013.12.015 | |||
Schwanitz VJ, Piontek F, Bertram C, Luderer G (2014) Long-term climate policy implications of phasing out fossil fuel subsidies. Energy Policy 67: | Searchinger T, Heimlich R, Houghton RA, et al (2008) Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change. Science 319:1238–1240. doi: 10.1126/science.1151861 | ||
Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresource Technology 101:1570–1580. doi: 10.1016/j.biortech.2009.11.046 | |||
Searchinger T, Heimlich R, Houghton RA, et al (2008) Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change. Science 319: | Strefler J, Luderer G, Aboumahboub T, Kriegler E (2014) Economic impacts of alternative greenhouse gas emission metrics: a model-based assessment. Climatic Change. doi: 10.1007/s10584-014-1188-y | ||
Sullivan P, Krey V, Riahi K (2013) Impacts of considering electric sector variability and reliability in the MESSAGE model. Energy Strategy Reviews 1:157–163. doi: 10.1016/j.esr.2013.01.001 | |||
Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresource Technology 101: | Takeshita T, Yamaji K (2008) Important roles of Fischer-Tropsch synfuels in the global energy future. Energy Policy 36:2773–2784. doi: http://dx.doi.org/10.1016/j.enpol.2008.02.044 | ||
Tanaka K, Kriegler E (2007) Aggregated Carbon Cycle, Atmospheric Chemistry, and Climate Model (ACC2). | |||
Sullivan P, Krey V, Riahi K (2013) Impacts of considering electric sector variability and reliability in the MESSAGE model. Energy Strategy Reviews 1: | Uddin SN, Barreto L (2007) Biomass-fired cogeneration systems with CO2 capture and storage. Renewable Energy 32:1006–1019. doi: 10.1016/j.renene.2006.04.009 | ||
Van Vuuren D, Stehfest E, Gernaat DEHJ, et al (under review) Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. | |||
Takeshita T, Yamaji K (2008) Important roles of Fischer-Tropsch synfuels in the global energy future. Energy Policy 36: | |||
Tanaka K, Kriegler E (2007) Aggregated Carbon Cycle, Atmospheric Chemistry, and Climate Model (ACC2). | |||
Uddin SN, Barreto L (2007) Biomass-fired cogeneration systems with CO2 capture and storage. Renewable Energy 32: | |||
Vuuren | |||
WGBU (2003) Welt im Wandel: Energiewende zur Nachhaltigkeit (WB der B globale Umweltveränderung, Ed.). | WGBU (2003) Welt im Wandel: Energiewende zur Nachhaltigkeit (WB der B globale Umweltveränderung, Ed.). |
Revision as of 23:37, 20 November 2016
Corresponding documentation | |
---|---|
Previous versions | |
Model information | |
Model link | |
Institution | Potsdam Institut für Klimafolgenforschung (PIK), Germany, https://www.pik-potsdam.de. |
Solution concept | General equilibrium (closed economy)MAgPIE: partial equilibrium model of the agricultural sector; |
Solution method | OptimizationMAgPIE: cost minimization; |
Anticipation |
Aguilera RF, Eggert RG, C. C. GL, Tilton JE (2009) Depletion and the Future Availability of Petroleum Resources. The Energy Journal Volume 30:141–174. Amann M, Bertok I, Borken-Kleefeld J, et al (2011) Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environmental Modelling & Software 26:1489–1501. doi: 10.1016/j.envsoft.2011.07.012 Ansolabehere S, Beer J, Deutch J, et al (2007) The Future of Coal: An Interdisciplinary MIT Study. Massachusetts Institute of Technology, Cambridge, Massachusetts Askari H, Krichene N (2010) An oil demand and supply model incorporating monetary policy. Energy 35:2013–2021. doi: 10.1016/j.energy.2010.01.017 Bauer N (2005) Carbon capture and sequestration: An option to buy time? Ph.D. Thesis, University of Potsdam Bauer N, Baumstark L, Leimbach M (2012a) The REMIND-R model: the role of renewables in the low-carbon transformation—first-best vs. second-best worlds. Climatic Change 114:145–168. doi: 10.1007/s10584-011-0129-2 Bauer N, Brecha RJ, Luderer G (2012b) Economics of nuclear power and climate change mitigation policies. PNAS 109:16805–16810. doi: 10.1073/pnas.1201264109 Bauer N, Edenhofer O, Kypreos S (2008) Linking energy system and macroeconomic growth models. CMS 5:95–117. doi: 10.1007/s10287-007-0042-3 Bauer N, Hilaire J, Brecha RJ, et al (under review) Assessing global fossil fuel availability in a scenario framework, in preparation. Bauer N, Mouratiadou I, Luderer G, et al (2013) Global fossil energy markets and climate change mitigation – an analysis with REMIND. Climatic Change in press. doi: 10.1007/s10584-013-0901-6 BGR (2010) Reserven, Ressourcen und Verfügbarkeit von Energierohstoffen 2010 - Kurzstudie. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover, Germany Brooke A, Kendrick D, Meeraus M (1992) GAMS - A User’s Guide, Release 2.25. The Scientific Press, San Francisco Brown D, Gassner M, Fuchino T, Marechal F (2009) Thermo-economic analysis for the optimal conceptual design of biomass gasification energy conversion systems. Applied Thermal Engineering 29:2137–2152. Brückl O (2005) Global Potential for electricity production from wind energy. Chen C, Rubin ES (2009) CO2 control technology effects on IGCC plant performance and cost. Energy Policy 37:915–924. doi: 10.1016/j.enpol.2008.09.093 Chum H, Faaij A, Moreira J, et al (2011) Bioenergy. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)],. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, Dahl C, Duggan TE (1998) Survey of price elasticities from economic exploration models of US oil and gas supply. Journal of Energy Finance & Development 3:129–169. doi: 10.1016/S1085-7443(99)80072-6 Dellink et al. (2015) Long-term growth projections in Shared Socioeconomic Pathways. Submitted to Global Environmental Change (submitted). Drud AS (1994) CONOPT - A Large-Scale GRG Code. ORSA Journal on Computing 6:207–216. EDGAR (2011) Global Emissions EDGAR v4.2. http://edgar.jrc.ec.europa.eu/overview.php?v=42. Accessed 25 Jan 2013 EEA (2009) Europe’s onshore and offshore wind energy potential - An assessment of environmental and economical constraints. Fargione J, Hill J, Tilman D, et al (2008) Land Clearing and the Biofuel Carbon Debt. Science 319:1235–1238. doi: 10.1126/science.1152747 Gül T, Kypreos S, Barreto L (2007) Hydrogen and Biofuels – A Modelling Analysis of Competing Energy Carriers for Western Europe. In: Proceedings of the World Energy Congress “Energy Future in an Interdependent World”. 11–15 November 2007, Rome, Italy. Haberl H, Beringer T, Bhattacharya SC, et al (2010) The global technical potential of bio-energy in 2050 considering sustainability constraints. Current Opinion in Environmental Sustainability 2:394–403. doi: 10.1016/j.cosust.2010.10.007 Hamelinck C (2004) Outlook for advanced biofuels. Ph.D. Thesis, University of Utrecht Heckscher EF, Ohlin B, Flam H, Flanders MJ (1991) Heckscher-Ohlin trade theory. MIT Press, Cambridge, Massachusetts Herfindahl OC (1967) Depletion and Economic Theory. In: Extractive Resources and Taxation. M. Gaffney (Ed.), University of Wisconsin Press, Madison, Wisconsin, Hoogwijk M (2004) On the global and regional potential of renewable energy sources. Ph.D. Thesis, Universiteit Utrecht, Faculteit Scheikunde Hoogwijk M, Graus W (2008) Global potential of renewable energy sources: a literature assessment. Ecofys Horlacher H-B (2003) Globale Potenziale der Wasserkraft. Externe Expertise für das WBGU-Hauptgutachten 2003 “Welt im Wandel: Energiewende zur Nachhaltigkeit.” WBGU, Heidelberg, Germany IEA (2008a) World Energy Outlook 2008. International Energy Agency IEA (2009) World Energy Outlook 2009. International Energy Agency, Paris, France IEA (2007a) Energy Balances of OECD Countries. International Energy Agency, Paris IEA (2007b) Energy Balances of non-OECD Countries. International Energy Agency, Paris IEA (2008b) CO2 Capture and Storage – A key carbon abatement option. International Energy Agency IHS CERA (2012) Upstream Capital Cost Index (UCCI) and Upstream Operating Cost Index (UOCI). In: IHS Indexes. http://www.ihs.com/info/cera/ihsindexes/index.aspx. Accessed 20 Nov 2012 Iwasaki W (2003) A consideration of the economic efficiency of hydrogen production from biomass. International Journal of Hydrogen Energy 28:939–944. Junginger HM, Lako P, Lensink S, et al (2008) Technological learning in the energy sector. MNP KC S, Lutz W (2016) The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Global Environmental Change in press. doi: 10.1016/j.gloenvcha.2014.06.004 Klein D, Humpenöder F, Bauer N, et al (2014) The global economic long-term potential of modern biomass in a climate-constrained world. Environ Res Lett 9:074017. doi: 10.1088/1748-9326/9/7/074017 Klimantos P, Koukouzas N, Katsiadakis A, Kakaras E (2009) Air-blown biomass gasification combined cycles: System analysis and economic assessment. Energy 34:708–714. Klimont Z, Hoglund L, Heyes C, et al (in prep.b) Global scenarios of air pollutants and methane: 1990-2050. Klimont Z, Kupiainen K, Heyes C, et al (in prep.a) Global anthropogenic emissions of particulate matter including black carbon. Krichene N (2002) World crude oil and natural gas: a demand and supply model. Energy Economics 24:557–576. doi: 10.1016/S0140-9883(02)00061-0 Kyle P, Davies EGR, Dooley JJ, et al (2013) Influence of climate change mitigation technology on global demands of water for electricity generation. International Journal of Greenhouse Gas Control 13:112–123. doi: 10.1016/j.ijggc.2012.12.006 Leimbach M, Bauer N, Baumstark L, et al (2010a) Technological Change and International Trade - Insights from REMIND-R. The Energy Journal 31:109–136. doi: 10.5547/ISSN0195-6574-EJ-Vol31-NoSI-5 Leimbach M, Bauer N, Baumstark L, Edenhofer O (2010b) Mitigation Costs in a Globalized World: Climate Policy Analysis with REMIND-R. Environ Model Assess 15:155–173. doi: 10.1007/s10666-009-9204-8 Leimbach M, Baumstark L, Luderer G (2015a) The role of time preferences in explaining long-term pattern of international trade. Global Economy Journal 15:83–106. doi: 10.1515/gej-2014-0035 Leimbach M, Schultes A, Baumstark L, et al (2015b) Solution algorithms of large‐scale Integrated Assessment models on climate change. Submitted to Annals of Operations Research. Lotze-Campen H, Müller C, Bondeau A, et al (2008) Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agricultural Economics 39:325–338. doi: 10.1111/j.1574-0862.2008.00336.x Lotze-Campen H, Popp A, Beringer T, et al (2010) Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade. Ecological Modelling 221:2188–2196. doi: 10.1016/j.ecolmodel.2009.10.002 Lu X, McElroy MB, Kiviluoma J (2009) Global potential for wind-generated electricity. PNAS 106:10933–10938. doi: 10.1073/pnas.0904101106 Lucas PL, van Vuuren DP, Olivier JGJ, den Elzen MGJ (2007) Long-term reduction potential of non-CO2 greenhouse gases. Environmental Science & Policy 10:85–103. doi: 10.1016/j.envsci.2006.10.007 Luderer G, Krey V, Calvin K, et al (2014) The role of renewable energy in climate stabilization: results from the EMF27 scenarios. Climatic Change 123:427–441. doi: 10.1007/s10584-013-0924-z Luderer G, Leimbach M, Bauer N, et al (2013) Description of the REMIND Model (Version 1.5). SSRN Working Paper 2312844 Luderer G, Pietzcker RC, Kriegler E, et al (2012) Asia’s role in mitigating climate change: A technology and sector specific analysis with ReMIND-R. Energy Economics 34:S378–S390. Macknick J, Newmark R, Heath G, Hallett KC (2011) A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies. National Renewable Energy Laboratory, Golden, Colorado Macknick J, Sattler, S., Averyt, K., et al (2012) The water implications of generating electricity: water use across the United States based on different electricity pathways through 2050. Environmental Research Letters 7:045803. Manne A, Mendelsohn R, Richels R (1995) MERGE: A model for evaluating regional and global effects of GHG reduction policies. Energy Policy 23:17–34. doi: 10.1016/0301-4215(95)90763-W Manne AS, Rutherford TF (1994) International Trade in Oil, Gas and Carbon Emission Rights: An Intertemporal General Equilibrium Model. The Energy Journal Volume15:57–76. Meinshausen M, S. C. B. Raper, T. M. L. Wigley (2011a) Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6–Part 1: Model description and calibration. Atmos Chem Phys 11:1417–1456. doi: 10.5194/acp-11-1417-2011 Meinshausen M, Wigley TML, Raper SCB (2011b) Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part 2: Applications. Atmos Chem Phys 11:1457–1471. doi: 10.5194/acp-11-1457-2011 Mouratiadou I, Bevione M, Bijl D, et al (submitted) The water-electricity nexus in deep decarbonization scenarios: a multi-model assessment. Mouratiadou I, Biewald A, Pehl M, et al (2016) The impact of climate change mitigation on water demand for energy and food: An integrated analysis based on the Shared Socioeconomic Pathways. Environmental Science & Policy 64:48–58. doi: 10.1016/j.envsci.2016.06.007 NEA (2009) Uranium 2009: Resources, Production and Demand. OECD Negishi T (1972) General equilibrium theory and international trade. North-Holland Publishing Company Amsterdam, London Neij L, Andersen PD, Durstewitz M, et al (2003) Experience Curves: A Tool for Energy Policy Assessment (Extool Final Report). Lund University, Risø National Laboratory, ISET Nitsch J, Krewitt W, Nast M, et al (2004) Ökologisch optimierter Ausbau der Nutzung erneuerbarer Energien in Deutschland (Kurzfassung). BMU, DLR, ifeu, Wuppertal Institut, Stuttgart, Heidelberg, Wuppertal Nordhaus WD, Boyer J (2000) Warming the World: Economic Models of Global Warming. MIT Press, Cambridge, MA Nordhaus WD, Yang Z (1996) A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies. The American Economic Review 86:741–765. O’Neill BC, Kriegler E, Riahi K, et al (2014) A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122:387–400. doi: 10.1007/s10584-013-0905-2 Pietzcker RC, Longden T, Chen W, et al (2014a) Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models. Energy 64:95–108. doi: 10.1016/j.energy.2013.08.059 Pietzcker RC, Stetter D, Manger S, Luderer G (2014b) Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power. Applied Energy 135:704–720. doi: 10.1016/j.apenergy.2014.08.011 Popp A, Lotze-Campen H, Bodirsky B (2010) Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Global Environmental Change 20:451–462. doi: 10.1016/j.gloenvcha.2010.02.001 Ragettli M (2007) Cost outlook for the production of biofuels. Diploma Thesis, Swiss Federal Institute of Technology Rogner H-H (1997) An assessment of world hydrocarbon ressources. Annual Review of Energy and the Environment 22:217–262. doi: 10.1146/annurev.energy.22.1.217 Rogner H-H, Aguilera RF, Archer CL, et al (2012) Chapter 7: Energy Resources and Potentials. In: Zou J (ed) Global Energy Assessment - Toward a Sustainable Future. Cambridge University Press, Cambridge, UK, pp 425–512 Rubin ES, Chen C, Rao AB (2007) Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy 35:4444–4454. doi: 10.1016/j.enpol.2007.03.009 Schulz T (2007) Intermediate steps towards the 2000-Watt society in Switzerland: an energy-economic scenario analysis. PhD Thesis, Swiss Federal Institute of Technology (ETH) Schwanitz VJ, Piontek F, Bertram C, Luderer G (2014) Long-term climate policy implications of phasing out fossil fuel subsidies. Energy Policy 67:882–894. doi: 10.1016/j.enpol.2013.12.015 Searchinger T, Heimlich R, Houghton RA, et al (2008) Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change. Science 319:1238–1240. doi: 10.1126/science.1151861 Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresource Technology 101:1570–1580. doi: 10.1016/j.biortech.2009.11.046 Strefler J, Luderer G, Aboumahboub T, Kriegler E (2014) Economic impacts of alternative greenhouse gas emission metrics: a model-based assessment. Climatic Change. doi: 10.1007/s10584-014-1188-y Sullivan P, Krey V, Riahi K (2013) Impacts of considering electric sector variability and reliability in the MESSAGE model. Energy Strategy Reviews 1:157–163. doi: 10.1016/j.esr.2013.01.001 Takeshita T, Yamaji K (2008) Important roles of Fischer-Tropsch synfuels in the global energy future. Energy Policy 36:2773–2784. doi: http://dx.doi.org/10.1016/j.enpol.2008.02.044 Tanaka K, Kriegler E (2007) Aggregated Carbon Cycle, Atmospheric Chemistry, and Climate Model (ACC2). Uddin SN, Barreto L (2007) Biomass-fired cogeneration systems with CO2 capture and storage. Renewable Energy 32:1006–1019. doi: 10.1016/j.renene.2006.04.009 Van Vuuren D, Stehfest E, Gernaat DEHJ, et al (under review) Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. WGBU (2003) Welt im Wandel: Energiewende zur Nachhaltigkeit (WB der B globale Umweltveränderung, Ed.).