Transport - TIAM-UCL
Corresponding documentation | |
---|---|
Previous versions | |
Model information | |
Model link | |
Institution | University College London (UCL), UK, https://www.ucl.ac.uk. |
Solution concept | Partial equilibrium (price elastic demand) |
Solution method | Linear optimisation |
Anticipation | Perfect Foresight
(Stochastic and myopic runs are also possible) |
Energy services demand
The transportation sector is characterized by 14 energy-services plus one non-energy use demand segment (Table 3.3.1). Six of the energy-services are considered as generic demands: international and domestic aviation, freight and passenger rail transportation, domestic and international navigation (TWD, TWI). All other energy-services are for road transport. Demand for road transport energy-services is expressed in b-vkm and others are in PJ. The model projects energy-services demands for each region.
Table 3.3.1: Energy-service demands in transport sector
Energy-service sectors |
Domestic Aviation |
International Aviation |
Road Bus Demand |
Road Commercial Trucks Demand |
Road Three Wheels Demand |
Road Heavy Trucks Demand |
Road Light Vehicle Demand |
Road Medium Trucks Demand |
Road Auto Demand |
Road Two Wheels Demand |
Rail-Freight |
Rail-Passengers |
Domestic Internal Navigation |
International Navigation |
Table 3.3.2 presents the list of transport fuels available to meet the base-year energy-service demand in each transport subsector. Diesel and gasoline are considered as the conventional technologies and the other are alternative fuels which are introduced later. Jet fuel and electricity are available to meet aviation demand.
Table 3.3.2: transport fuels
Fuel |
diesel |
electricity |
ethanol |
gasoline |
LPG |
methanol |
natural gas |
No new investments are allowed for existing technologies. For each end-use, a number of existing technologies are in competition to satisfy the energy-services demand for future years. Efficiency and cost of these technologies improve over the period with vintages. These technologies progressively replace the existing ones and they are characterized by the same type of parameters such as efficiency, and investment cost. There are many new technologies available for the road transport sector whereas technological detail is very limited in rail, shipping and aviation modes. Investment and O&M costs shown are US dollar reference prices. They are multiplied by regionally specific factors for each region. Technology and regional specific hurdle rate, which are used to annualise the investment cost, are also applied.
Residential and commercial sectors
Commercial Sector
Commercial sector base-year final energy consumption is calibrated in the residential sector Base-Year template, which has separate sheets for commercial sector IEA data, sector fuel data, end-use technology data and emissions data. There are separate sheets available for technology data for each energy-service demand.
Energy services demand
The commercial sector includes eight energy service demands for each region as presented in Table 3.4.1. Some segments of the commercial sector energy-services are identified using more than one code, which means that the demand can be disaggregated in four or less sub-regions.When no sub-regions have been defined, the codes for sub-region 1 are used by default. Currently, USA and CAN have four and three geographic regions, respectively, while AFR, CHI, IND, MEA and MEX each have two ?sub-regions?, corresponding to rural and urban areas. The energy-service demands for the future period (2005-2100) are projected using appropriate drivers and elasticity.
Table 3.4.1: Energy-services in commercial sector
Energy-service |
Commercial Cooling |
Commercial Cooking |
Commercial Space Heat |
Commercial Hot Water |
Commercial Lighting |
Commercial Office Equipment |
Commercial Refrigeration |
Sector fuels
Table 3.4.2 contains details of existing fuel technologies (each also has a new fuel technology vintage) for the commercial sector. Commercial sector emissions factor to capture commercial sector emissions are also included in the Base-Year template.
Table 3.4.2: commercial sector fuel technologies-existing
Technology Description |
Fuel Tech - Natural Gas Mix (COM) |
Fuel Tech - Diesel (COM) |
Fuel Tech - Heavy Fuel Oil (COM) |
Fuel Tech - Kerosene (COM) |
Fuel Tech - Coal (COM) - Existing |
Fuel Tech - Liquefied Petroleum Gases (COM) |
Fuel Tech - Biofuels (COM) |
Fuel Tech - Geothermal (COM) |
Fuel Tech - Solar (COM) |
Fuel Tech - Electricity (COM) |
Fuel Tech - Heat (COM) |
Technologies
There are a number of existing technologies modelled for each energy service demand in the Base-Year template for each region and sub-region. For each energy service demand, a number of technologies are in competition to satisfy the demand. They are characterized by an efficiency, an annual utilization factor, a lifetime, operation costs, and six seasonal share coefficients (summer-day, summer-night, intermediary-day, intermediary-night, winter-day, winter-night). No future investment is allowed in the existing technologies. A list of new technologies are modelled. These technologies are available after the first period (base-year) and progressively replace the existing ones as they reach the end of their technology life assumptions. In addition to parameters specified for existing technologies, new technology descriptions include information such as technology cost. The parameters such as cost, efficiency, etc., can improve over the years with vintages. Regional specific hurdle rates, which is used to annualised the investment cost, are used for commercial end-use technologies